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Abstract

Several schemes for linear mapping of a multidimensional space have been proposed for various applica-

tions such as access methods for spatio-temporal databases and image compression. In these applications,

one of the most desired properties from such linear mappings is clustering, which means the locality be-

tween objects in the multidimensional space being preserved in the linear space. It is widely believed that

the Hilbert space-�lling curve achieves the best clustering [1, 14]. In this paper, we analyze the clustering

property of the Hilbert space-�lling curve by deriving closed-form formulas for the number of clusters in a

given query region of an arbitrary shape (e.g., polygons and polyhedra). Both the asymptotic solution for

the general case and the exact solution for a special case generalize previous work [14]. They agree with

the empirical results that the number of clusters depends on the hyper-surface area of the query region

and not on its hyper-volume. We also show that the Hilbert curve achieves better clustering than the z

curve. From a practical point of view, the formulas given in this paper provide a simple measure that can

be used to predict the required disk access behaviors and hence the total access time.
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1 Introduction

The design of multidimensional access methods is diÆcult compared to one-dimensional cases because there

is no total ordering that preserves spatial locality. Once a total ordering is found for a given spatial or

multidimensional database, one can use any one-dimensional access method (e.g., B+-tree), which may

yield good performance for multidimensional queries. An interesting application of the ordering arises in a

multidimensional indexing technique proposed by Orenstein [19]. The idea is to develop a single numeric

index on a one-dimensional space for each point in a multidimensional space, such that for any given object,

the range of indices, from the smallest index to the largest, includes few points not in the object itself.

Consider a linear traversal or a typical range query for a database where record signatures are mapped

with multi-attribute hashing [24] to buckets stored on disk. The linear traversal speci�es the order in

which the objects are fetched from disk as well as the number of blocks fetched. The number of non-

consecutive disk accesses will be determined by the order of blocks fetched. Although the order of blocks

fetched is not explicitly speci�ed in the range query, it is reasonable to assume that the set of blocks

fetched can be rearranged into a number of groups of consecutive blocks by a database server or disk

controller mechanism [25]. Since it is more eÆcient to fetch a set of consecutive disk blocks rather than a

randomly scattered set in order to reduce additional seek time, it is desirable that objects close together in a

multidimensional attribute space also be close together in the one-dimensional disk space. A good clustering

of multidimensional data points on the one-dimensional sequence of disk blocks may also reduce the number

of disk accesses that are required for a range query.

In addition to the applications described above, several other applications also bene�t from a linear

mapping that preserves locality:

1. In traditional databases, a multi-attribute data space must be mapped into a one-dimensional disk space

to allow eÆcient handling of partial-match queries [22]; in numerical analysis, large multidimensional

arrays [6] have to be stored on disk, which is a linear structure.

2. In image compression, a family of methods use a linear mapping to transform an image into a bit string;

subsequently, any standard compression method can be applied [18]. A good clustering of pixels will

result in a fewer number of long runs of similar pixel values, thereby improving the compression ratio.

3. In geographic information systems (GIS), run-encoded forms of image representations are ordering-

sensitive, as they are based on representations of the image as sets of runs [1].

4. Heuristics in computational geometry problems use a linear mapping. For example, for the traveling

salesman problem, the cities are linearly ordered and visited accordingly [2].

5. Locality-preserving mappings are used for bandwidth reduction of digitally sampled signals [4] and for

graphics display generation [20].

6. In scienti�c parallel processing, locality-preserving linearization techniques are widely used for dynamic

unstructured mesh partitioning [17].

Sophisticated mapping functions have been proposed in the literature. One based on interleaving bits

from the coordinates, which is called z-ordering, was proposed [19]. Its improvement was suggested by

Faloutsos [8], using Gray coding on the interleaved bits. A third method, based on the Hilbert curve [13],

was proposed for secondary key retrieval [11]. In the mathematical context, these three mapping functions are

based on di�erent space-�lling curves: the z curve, the Gray-coded curve and the Hilbert curve, respectively.

Figure 1 illustrates the linear orderings yielded by the space-�lling curves for a 4�4 grid.
It was shown that under most circumstances, the linear mapping based on the Hilbert space-�lling curve

outperforms the others in preserving locality [14]. In this paper, we provide analytic results of the clustering

e�ects of the Hilbert space-�lling curve, focusing on arbitrarily shaped range queries, which require the

retrieval of all objects inside a given hyper-rectangle or polyhedron in multidimensional space.

For purposes of analysis, we assume a multidimensional space with �nite granularity, where each point

corresponds to a grid cell. The Hilbert space-�lling curve imposes a linear ordering on the grid cells,

assigning a single integer value to each cell. Ideally, it is desirable to have mappings that result in fewer

disk accesses. The number of disk accesses, however, depends on several factors such as the capacity of
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z curve Gray-coded curve Hilbert curve

Figure 1: Illustration of space-�lling curves

the disk pages, the splitting algorithm, the insertion order and so on. Here we use the average number of

clusters, or continuous runs, of grid points within a subspace representing a query region, as the measure of

the clustering performance of the Hilbert curve. If each grid point is mapped to one disk block, this measure

exactly corresponds to the number of non-consecutive disk accesses, which involve additional seek time. This

measure is also highly correlated to the number of disk blocks accessed, since (with many grid points in a

disk block) consecutive points are likely to be in the same block, while points across a discontinuity are likely

to be in di�erent blocks. This measure is used only to render the analysis tractable, and some weaknesses

of this measure were discussed in [14].
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Figure 2: Illustration of: (a) two clusters for the z curve, (b) one cluster for the Hilbert curve

De�nition 1.1 Given a d-dimensional query, a cluster is de�ned to be a group of grid points inside the query

that are consecutively connected by a mapping (or a curve).

For example, there are two clusters in the z curve (Figure 2(a)) but only one in the Hilbert curve (Figure 2(b))

for the same 2-dimensional rectangular query Sx � Sy. Now, the problem we will investigate is formulated

as follows:

Given a d-dimensional rectilinear polyhedron representing a query, �nd the average number of

clusters inside the polyhedron for the Hilbert curve.

The de�nition of the d-dimensional rectilinear polyhedron is given in Section 3. Note that in the d-dimensional

space with �nite granularity, for any d-dimensional object such as spheres, ellipsoids, quadric cones and so
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on, there exists a corresponding (rectilinear) polyhedron that contains exactly the same set of grid points

inside the given object. Thus, the solution to the problem above will cover more general cases concerning any

simple connected object of arbitrary shape. The rest of the paper is organized as follows. Section 2 surveys

historical work on space-�lling curves and other related analytic studies. Section 3 presents an asymptotic

formula of the average number of clusters for d-dimensional range queries of arbitrary shape. Section 4

derives a closed-form exact formula of the average number of clusters in a 2-dimensional space. In Section 5,

we provide empirical evidence to demonstrate the correctness of the analytic results for various query shapes.

Finally, in Section 6, we discuss the contributions of this paper and suggest future work.

2 Historical Survey and Related Work

G. Peano, in 1890, discovered the existence of a continuous curve which passes through every point of a

closed square [21]. According to Jordan's precise notion (in 1887) of continuous curves, Peano's curve is a

continuous mapping of the closed unit interval I = [0; 1] into the closed unit square S = [0; 1]2. Curves of

this type have come to be called Peano curves or space-�lling curves [28]. Formally,

De�nition 2.1 If a mapping f : I ! En(n � 2) is continuous, and f(I) the image of I under f has positive

Jordan content (area for n = 2 and volume for n = 3), then f(I) is called a space-�lling curve. En denotes

an n-dimensional Euclidean space.

Although G. Peano discovered the �rst space-�lling curve, it was D. Hilbert in 1891 who was the �rst

to recognize a general geometric procedure that allows the construction of an entire class of space-�lling

curves [13]. If the interval I can be mapped continuously onto the square S, then after partitioning I

into four congruent subintervals and S into four congruent subsquares, each subinterval can be mapped

continuously onto one of the subsquares. If this is carried on ad in�nitum, I and S are partitioned into 22n

congruent replicas for n = 1; 2; 3; � � � ;1. Hilbert demonstrated that the subsquares can be arranged so that

the inclusion relationships are preserved, that is, if a square corresponds to an interval, then its subsquares

correspond to the subintervals of that interval. Figure 3 describes how this process is to be carried out

for the �rst three steps. It has been shown that the Hilbert curve is a continuous, surjective and nowhere

di�erentiable mapping [26]. However, Hilbert gave the space-�lling curve, in a geometric form only, for

mapping I into S (i.e., 2-dimensional Euclidean space). The generation of a 3-dimensional Hilbert curve

was described in [14, 26]. A generalization of the Hilbert curve, in an analytic form, for higher dimensional

spaces was given in [5].

(a) First step (b) Second step (c) Third step

Figure 3: The �rst three steps of Hilbert space-�lling curve

In this paper, a d-dimensional Euclidean space with �nite granularity is assumed. Thus, we use the k-th

order approximation of a d-dimensional Hilbert space-�lling curve (k � 1 and d � 2), which maps an integer

set [0; 2kd � 1] into a d-dimensional integer space [0; 2k � 1]d.

Notation 2.1 For k � 1 and d � 2, let Hd
k denote the k-th order approximation of a d-dimensional Hilbert

space-�lling curve, which maps [0; 2kd � 1] into [0; 2k � 1]d.
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The drawings of the �rst, second and third steps of the Hilbert curve in Figure 3 correspond to H2
1, H

2
2 and

H2
3, respectively.

Jagadish [14] compared the clustering properties of several space-�lling curves by considering only 2�2
range queries. Among the z curve (2.625), the Gray-coded curve (2.5) and the Hilbert curve (2), the Hilbert

curve was the best in minimizing the number of clusters. The numbers within the parentheses are the average

number of clusters for 2�2 range queries. Rong and Faloutsos [23] derived a closed-form expression of the

average number of clusters for the z curve, which gives 2.625 for 2�2 range queries (exactly the same as the

result given in [14]) and in general approaches one third of the perimeter of the query rectangle plus two

thirds of the side length of the rectangle in the unfavored direction. Jagadish [16] derived closed-form, exact

expressions of the average number of clusters for the Hilbert curve in a 2-dimensional grid, but only for 2�2
and 3�3 square regions. This is a special case of the more general formulae derived in this paper.

Abel and Mark [1] reported empirical studies to explore the relative properties of such mapping functions

using various metrics. They reached the conclusion that the Hilbert ordering deserves closer attention as

an alternative to the z curve ordering. Bugnion et al. estimated the average number of clusters and the

distribution of inter-cluster intervals for 2-dimensional rectangular queries. They derived the estimations

based on the fraction of vertical and horizontal edges of any particular space-�lling curve. However, those

fractions were provided only for a 2-dimensional space and without any calculation or formal veri�cation.

In this paper, we formally prove that, in a d-dimensional space, the d di�erent edge directions approach the

uniform distribution, as the order of the Hilbert curve approximation grows into in�nity.

Several closely related analyses for the average number of 2-dimensional quadtree nodes have been pre-

sented in the literature. Dyer [7] presented an analysis for the best, worst and average case of a square of

size 2n�2n, giving an approximate formula for the average case. Sha�er [27] gave a closed formula for the

exact number of blocks that such a square requires when anchored at a given position (x; y); he also gave

a formula for the average number of blocks for such squares (averaged over all possible positions). Some of

these formulae were generalized for arbitrary 2-dimensional and d-dimensional rectangles [9, 10].

3 Asymptotic Analysis

In this section, we give an asymptotic formula for the clustering property of the Hilbert space-�lling curve

for general polyhedra in a d-dimensional space. The symbols used in this section are summarized in Table 1.

The polyhedra we consider here are not necessarily convex, but are rectilinear in the sense that any (d-1)-

dimensional polygonal surface is perpendicular to one of the d coordinate axes.

De�nition 3.1 A rectilinear polyhedron is bounded by a set V of polygonal surfaces each of which is perpen-

dicular to one of the d coordinate axes, where V is a subset of Rd and homeomorphic 1 to a (d-1)-dimensional

sphere Sd�1.

For d = 2 the set V is, by de�nition, a Jordan curve [3], which is essentially a simple closed curve in R2. The

set of surfaces of a polyhedron divides the d-dimensional space Rd into two connected components, which

may be called the interior and the exterior.

The basic intuition is that each cluster within a given polyhedron corresponds to a segment of the Hilbert

curve, connecting a group of grid points in the cluster, which has two endpoints adjacent to the surface of the

polyhedron. The number of clusters is then equal to half the number of endpoints of the segments bounded

by the surface of the polyhedron. In other words,

Remark 3.1 The number of clusters within a given d-dimensional polyhedron is equal to the number of entries

(or exits) of the Hilbert curve into (or from) the polyhedron.

Thus, we expect that the number of clusters is approximately proportional to the perimeter or hyper-surface

area of the d-dimensional polyhedron (d � 2). With this observation, the task is reduced to �nding a constant

factor of a linear function.

Our approach to derive the asymptotic solution largely depends on the self-similar nature of the Hilbert

curve, which stems from the recursive process of the curve expansion. Speci�cally, we shall show in the

1Two subsets X and Y of Euclidean space are called homeomorphic if there exists a continuous bijective mapping, f : X ! Y ,

with a continuous inverse f�1 [12].
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Figure 4: the 3-dimensional Hilbert curve (H3
k with vertices representing H3

k�1 approximations annotated

by their orientations.)
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Figure 5: the 4-dimensional Hilbert curve (H4
k with vertices representing H4

k�1 approximations annotated

by their orientations.)

following lemmas that the edges of d di�erent orientations are uniformly distributed in a d-dimensional

Euclidean space. That is, approximately one d-th of the edges are aligned to the i-th dimensional axis for

each i (1 � i � d). Here we mean by edges the line segments of the Hilbert curve connecting two neighboring

points. The uniform distribution of the edges provides key leverage for deriving the asymptotic solution. To

show the uniform distribution, it is important to understand

� how the k-th order approximation of the Hilbert curve is derived from lower order approximations, and

� how the d-dimensional Hilbert curve is extended from the 2-dimensional Hilbert curve, which was

described only in a geometric form in [13]. (Analytic forms for the d-dimensional Hilbert curves were

presented in [5].)

In a d-dimensional space, the k-th order approximation of the d-dimensional Hilbert curve Hd
k is derived

from the 1-st order approximation of the d-dimensional Hilbert curve Hd
1 by replacing each vertex in the Hd

1

by Hd
k�1, which may be rotated about a coordinate axis and/or reected about a hyperplane perpendicular

to a coordinate axis. Since there are 2d vertices in the Hd
1, the H

d
k is considered to be composed of 2d Hd

k�1

vertices and (2d�1) edges, each connecting two of them.

Before describing the extension for the d-dimensional Hilbert curve, we de�ne the orientations of Hd
k.

Consider Hd
1 , which consists of 2d vertices and (2d�1) edges. No matter where the Hilbert curve starts its

traversal, the coordinates of the start and end vertices of the Hd
1 di�er only in one dimension, meaning that

both vertices lie on a line parallel to one of the d coordinate axes. We say that Hd
1 is i-oriented if its start

and end vertices lie on a line parallel to the i-th coordinate axis. For any k (k > 1), the orientation of Hd
k is

equal to that of Hd
1 from which it is derived.

Figure 4 and Figure 5 illustrate the processes that generate H3
k from H2

k, and H
4
k from H3

k, respectively.

In general, when the d-th dimension is added to the (d-1)-dimensional Hilbert curve, each vertex of Hd�1
1

(i.e., Hd�1
k�1) is replaced by Hd

k�1 of the same orientation except in the 2d�1-th one (i.e., the end vertex of
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Hd�1
1 ), whose orientation is changed from 1-oriented to d-oriented parallel to the d-th dimensional axis. For

example, in Figure 5, the orientations of the two vertices connected by a dotted line have been changed

from 1 to 4. Since the orientations of all the other (2d�1�1) Hd
k�1 vertices remain unchanged, they are all

j-oriented for some j (1 � j < d). The whole 2d�1 Hd
k�1 vertices are then replicated by reection, and �nally

the two replicas are connected by an edge parallel to the d-th coordinate axis (called d-oriented edge) to

form a d-oriented Hd
k. In short, whenever a dimension (say, the d-th dimension) is added, two d-oriented

Hd
k�1 vertices are introduced, the number of 1-oriented Hd

k�1 vertices remains unchanged as two, and the

number of Hd
k�1 vertices of the other orientations are doubled.

Symbol De�nition

d Number of dimensions

(x1; :::; xd) Coordinates of a grid point in a d-dimensional grid space

Hd
k k-th order approximation of the d-dimensional Hilbert curve

'i Number of i-oriented Hd
k�1 vertices in a Hd

k

"i;k Number of i-oriented edges in a d-oriented Hd
k

S+i Number of interior grid points which face i+-surface

S�i Number of interior grid points which face i�-surface

p+i Probability that the predecessor of a grid point is its i+-neighbor

p�i Probability that the predecessor of a grid point is its i�-neighbor

Sq Total surface area of a given d-dimensional rectilinear polyhedral query q

Nd Average number of clusters within a given d-dimensional rectilinear polyhedron

Table 1: De�nition of Symbols

Notation 3.1 Let 'i be the number of i-oriented Hd
k�1 vertices in a given d-oriented Hd

k.

Lemma 1 For a d-oriented Hd
k (d � 2),

'i =

(
2 if i = 1,

2d+1�i if 1 < i � d.
(1)

Proof. By induction on d.

The following lemma shows that the edges of d di�erent orientations approach the uniform distribution

as the order of the Hilbert curve approximation grows into in�nity.

Notation 3.2 Let "i;k denote the number of i-oriented edges in a (d-oriented) Hd
k.

Lemma 2 In a d-dimensional space, for any i and j (1 � i; j � d), "i;k="j;k approaches unity as k grows to

in�nity.

Proof. We begin by deriving recurrence relations among the terms "i;k and 'i. As we mentioned previously,

the fundamental operations involved in expanding the Hilbert curve (i.e., from Hd
k�1 to H

d
k) are rotation and

reection. During the expansion of Hd
k, the orientation of a Hd

k�1 vertex in a quantized subregion is changed

only by rotation; a set of subregions of an orientation are replicated from one of the same orientation, which

leaves the directions of their edges unchanged. Consequently, any two distinct Hd
k�1 vertices of the same

orientation contain the same number of edges "i;k�1 for each direction i (1 � i � d). Therefore, the set of

the 1-oriented edges in the Hd
k consists of 2d�1 connection edges (in Hd

1), d-oriented edges of the 1-oriented

Hd
k�1 vertices, (d-1)-oriented edges of the 2-oriented Hd

k�1 vertices, (d-2)-oriented edges of the 3-oriented

Hd
k�1 vertices and so on.
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By applying the same procedure to the other directions, we obtain

"1;k = '1"d;k�1 + '2"d�1;k�1 + � � �+ 'd"1;k�1 + 2d�1

"2;k = '2"d;k�1 + '3"d�1;k�1 + � � �+ '1"1;k�1 + 2d�2

"3;k = '3"d;k�1 + '4"d�1;k�1 + � � �+ '2"1;k�1 + 2d�3 (2)

...

"d;k = 'd"d;k�1 + '1"d�1;k�1 + � � �+ 'd�1"1;k�1 + 1

The initial values are given by "i;1 = 2d�i, and the values of 'i are in Lemma 1. The constants in the

last terms being ignored, the recurrence relations are completely symmetric. From the symmetry, it can be

shown that for any i and j (1 � i; j � d),

lim
k!1

"i;k

"j;k
= 1:

The proof is complete.

Now we consider a d-dimensional grid space, which is equivalent to a d-dimensional Euclidean integer

space. In the d-dimensional grid space, each grid point y = (x1; : : : ; xd) has 2d neighbors. The coordinates

of the neighbors di�er from those of y by unity only in one dimension. In other words, the coordinates of

the neighbors that lie in a line parallel to the i-th axis must be either (x1; : : : ; xi+1; : : : ; xd) or (x1; : : : ; xi�
1; : : : ; xd). We call them the i+-neighbor and the i�-neighbor of y, respectively.

Butz showed that any unit increment in the Hilbert order produces a unit increment in one of the d

coordinates and leaves the other d�1 coordinates unchanged [5]. The implication is that, for any grid point

y, both the neighbors of y in the linear order imposed by the Hilbert curve are chosen from the 2d neighbors

of y in the d-dimensional grid space. Of the two neighbors of y in the Hilbert order, the one closer to the

start of the Hilbert traversal is called the predecessor of y.

Notation 3.3 For a grid point y in a d-dimensional grid space, let p+i be the probability that the predecessor

of y is the i+-neighbor of y, and let p�i be the probability that the predecessor of y is the i�-neighbor of y.

Lemma 3 In a suÆciently large d-dimensional grid space, for any i (1 � i � d),

p+i + p�i =
1

d
:

Proof. Assume y is a grid point in d-dimensional space and z is its predecessor. Then the edge yz adjacent

to y and z is parallel to one of the d dimensional axes. From Lemma 2 and the recursive de�nition of the

Hilbert curve, the probability that yz is parallel to the i-th dimensional axis is d�1 for any i (1 � i � d).

This implies that the probability that z is either i+-neighbor or i�-neighbor of y is d�1.

For a d-dimensional rectilinear polyhedron representing a query region, the number, sizes and shapes of

the surfaces can be arbitrary. Due to the constraint of surface alignment, however, it is feasible to classify

the surfaces of a d-dimensional rectilinear polyhedron into 2d di�erent kinds: for any i (1 � i � d),

� If a point y is inside the polyhedron and its i+-neighbor is outside, then the point y faces an i+-surface.

� If a point y is inside the polyhedron and its i�-neighbor is outside, then the point y faces an i�-surface.

For example, Figure 6 illustrates grid points which face surfaces in a 2-dimensional grid space. The shaded

region represents the inside of the polyhedron. Assuming that the �rst dimension is vertical and the second

dimension is horizontal, grid points A and D face a 1+-surface, and grid point B (on the convex) faces both

a 1+-surface and a 2+-surface. Although grid point C (on the concave) is close to the boundary, it does not

face any surface because all of its neighbors are inside the polyhedron. Consequently, the chance that the

Hilbert curve enters the polyhedron through grid point B is approximately twice that of entering through

grid point A (or D). The Hilbert curve cannot enter through grid point C.

For any d-dimensional rectilinear polyhedron, it is interesting to see that the aggregate area of i+-surface

is exactly as large as that of i�-surface. In a d-dimensional grid space, we mean by surface area the number

of interior grid points that face a given surface of any kind.
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Figure 6: Illustration of grid points facing surfaces

Notation 3.4 For a d-dimensional rectilinear polyhedron, let S+i and S�i denote the aggregate number of

interior grid points that face i+-surface and i�-surface, respectively.

Before proving the following theorem, we state without proof an elementary remark.

Remark 3.2 Given a d-dimensional rectilinear polyhedron, S+i = S�i for any i (1 � i � d).

Notation 3.5 Let Nd be the average number of clusters within a given d-dimensional rectilinear polyhedron.

Theorem 1 In a suÆciently large d-dimensional grid space mapped by Hd
k, let Sq be the total surface area

of a given rectilinear polyhedral query q. Then,

lim
k!1

Nd =
Sq
2d

(3)

Proof. Assume a grid point y faces an i+-surface (or an i�-surface). Then, the probability that the Hilbert

curve enters the polyhedron through y is equivalent to the probability that the predecessor of y is an

i+-neighbor (or an i�-neighbor) of y. Thus, the expected number of entries through an i+-surface (or an

i�-surface) is S+i p
+
i (or S�i p

�
i ). Since the number of clusters is equal to the total number of entries into the

polyhedron through any of the 2d kinds of surfaces (Remark 3.1), it follows that

lim
k!1

Nd =

dX
i=1

(S+i p
+
i + S�i p

�
i )

=

dX
i=1

S+i (p
+
i + p�i ) (by Remark 3.2)

=

dX
i=1

S+i
1

d
(by Lemma 3)

=
Sq
2d
:

The proof is complete.

Theorem 1 con�rms our early conjecture that the number of clusters is approximately proportional to the

hyper-surface area of a d-dimensional polyhedron, and provides (2d)�1 as the constant factor of the linear

function. In a 2-dimensional space, the average number of clusters for the z curve approaches one third

of the perimeter of a query rectangle plus two thirds of the side length of the rectangle in the unfavored

direction [23]. It follows that the Hilbert curve achieves better clustering than the z curve, because the

average number of clusters for the Hilbert curve is approximately equal to one fourth of the perimeter of a

2-dimensional query rectangle.
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Corollary 1 In a suÆciently large d-dimensional grid space mapped by Hd
k, the following properties are

satis�ed:

(i) Given an s1�s2�� � ��sd hyper-rectangle, limk!1Nd =
1
d

Pd

i=1(
1
si

Qd

j=1 sj).

(ii) Given a hypercube of side length s, limk!1Nd = sd�1.

For a square of side length 2, Corollary 1(ii) provides 2 as an average number of clusters, which is exactly

the same as the result given in [14].

4 Exact Analysis : A Special Case

Theorem 1 states that as the size of a grid space grows in�nitely, the average number of clusters approaches

half the surface area of a given query region divided by the dimensionality. It does not provide an intuition

as to how rapidly the number of clusters converges to the asymptotic solution. To address this issue, in this

section, we derive a closed-form, exact formula for a 2-dimensional �nite space. We can then measure how

closely the asymptotic solution reects the reality in a �nite space, by comparing it with the exact formula.

Speci�cally, we assume that a �nite 2k+n�2k+n grid space is mapped by H2
k+n and a query region is a

square of size 2k�2k. We �rst describe our approach and then present the formal derivation of the solution

in several lemmas and a theorem. Table 2 summarizes the symbols used in this section.

4.1 Basic concepts

Remark 3.1 states that the number of clusters within a given query region is equal to the number of entries

into the region made by the Hilbert curve traversal. Since each entry is eventually followed by an exit from

the region, an entry is equivalent to two cuts of the Hilbert curve by the boundary of the query region. We

restate Remark 3.1 as follows:

Remark 4.1 The number of clusters within a given query region is equal to half the number of edges cut by

the boundary of the region.

Here we mean by edges the line segments of the Hilbert curve connecting two neighboring grid points. Now

we know from Remark 4.1 that deriving the exact formula is reduced to counting the number of edge cuts

by the boundary of a 2k�2k query window at all possible positions within a 2k+n�2k+n grid region. Then

the average number of clusters is simply obtained by dividing this number by twice the number of possible

positions of the query window.

Notation 4.1 Let N2(k; k + n) be the average number of clusters inside a 2k�2k square window in a 2k+n�2k+n

grid region.

The diÆculty of counting the edge cuts lies in the fact that, for each edge within the grid region, the

number of cuts varies depending on the location of the edge. Intuitively, the edges near the boundary of the

grid region are cut less often than those near the center. This is because a smaller number of square windows

can cut the edges near the boundary. Thus, to make it easier to count the edge cuts, the grid region H2
k+n

is divided into nine subregions, as shown in Figure 7. The width of the subregions on the boundary is 2k.

Then the 2k+n�2k+n grid region (H2
k+n) can be considered as a collection of 22n H2

k approximations each

of which is connected to one or two neighbors by connection edges. From now on, we mean by an internal

edge one of the 22k � 1 edges in a H2
k, and by a connection edge one that connects two H2

k subregions. For

example, subregion F includes only one H2
k and is connected to subregions B and D by a horizontal and a

vertical connection edge, respectively. Subregion B includes (2n � 2) H2
k approximations each of which is

connected to its two neighbors by connection edges.

Consider an edge (internal or connection) near the center of subregion A, and a horizontal edge in subregion

B. An edge in subregion A can be cut by 2k+1 square windows whose positions within the region are mutually

distinct. On the other hand, a horizontal edge in subregion B can be cut by a di�erent number of distinct

windows, depending on the position of the edge. Speci�cally, if the edge in subregion B is on the i-th row

from the topmost, then it is cut 2� i times. The observations we have made are summarized as follows:
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Figure 7: H2
k+n divided into nine subregions

A1. Every edge (either horizontal or vertical) at least one of whose end points resides in subregion A is cut

2k+1 times.

A2. Every vertical edge in subregions B and C is cut 2k times by the top or bottom side of a window.

A3. Every horizontal edge in subregions D and E is cut 2k times by the left or right side of a window.

A4. Every connection edge in subregions fB,F,Hg is horizontal and resides in the 2k-th row from the

topmost, and is cut 2k+1 times by the left and right sides of a window. Similarly, every connection

edge in subregions fC,G,Ig is horizontal and resides in the 2k-th row from the topmost, and is cut

twice by the left and right sides of a window.

A5. Every connection edge in subregions fD,F,Gg is vertical and resides in the �rst column from the

leftmost, and is cut twice by the top and bottom sides of a window. Every connection edge in subregions

fE,H,Ig is vertical and resides in the �rst column from the rightmost, and is cut twice by the top and

bottom sides of a window.

A6. Every horizontal edge in the i-th row from the topmost of subregion B is cut 2� i times by both the left

and right sides of a window, and every horizontal edge in the i-th row from the topmost of subregion

C is cut 2k+1 � 2� i+ 2 times by both the left and right sides of a window.

A7. Every vertical edge in the i-th column from the leftmost of subregion D is cut 2� i times by both the

top and bottom sides of a window, and every vertical edge in the i-th column from the leftmost of

subregion E is cut 2k+1 � 2� i+ 2 times by both the top and bottom sides of a window.

A8. Every horizontal edge in the i-th row from the topmost of subregions fF,Hg is cut i times by either

the left or right side of a window.

A9. Every horizontal edge in the i-th row from the topmost of subregions fG,Ig is cut 2k � i+ 1 times by

either the left or right side of a window.

A10. Every vertical edge in the i-th column from the leftmost of subregions fF,Gg is cut i times by either

the top or bottom side of a window.

A11. Every vertical edge in the i-th column from the leftmost of subregions fH,Ig is cut 2k � i+1 times by

either the top or bottom side of a window.

A12. Two connection edges through which the Hilbert curve enters into and leaves from the grid region are

cut once each.

From these observations, we can categorize the edges in the H2
k+n grid region into the following �ve

groups:
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(i) E1: a group of edges as described in observation A1. Each edge is cut 2k+1 times.

(ii) E2: a group of edges as described in observations A2 and A3. Each edge is cut 2k times.

(iii) E3: a group of edges as described in observations A4 and A5. Each connection edge on the top

boundary (i.e., subregions fB,F,Hg) is cut 2k+1 times, and any other connection edge is cut twice.

(iv) E4: a group of edges as described in observations A6 and A7. Each edge is cut 2i or 2(2k� i+1) times

if it is in the i-th row (or column) from the topmost (or leftmost).

(v) E5: a group of edges as described in observations A8 to A11. Each edge is cut i or 2k � i+ 1 times if

it is in the i-th row (or column) from the topmost (or leftmost).

Notation 4.2 Ni denotes the number of edge cuts from an edge group Ei.

In a H2
k+n grid region, the number of all possible positions of a 2k�2k window is (2k+n � 2k + 1)2. Since

there are two more cuts from observation A12, in addition to N1; : : : ; N5, the average number of clusters

N2(k; k + n) is given by

N2(k; k + n) =
N1 +N2 +N3 +N4 +N5 + 2

2(2k+n � 2k + 1)2
: (4)

In the next section, we derive a closed-form expression for each of the edge groups N1; : : : ; N5.

Symbol De�nition

tn Number of connection edges in the top boundary of a 2+-oriented H2
k+n

bn Number of connection edges in the bottom boundary of a 2+-oriented H2
k+n

sn Number of connection edges in the side boundary of a 2+-oriented H2
k+n

Ei A group of edges between grid points

Ni Number of edge cuts from an edge group Ei

 
fRg
i+;n

Number of i+-oriented H2
k approximations in the subregion R of a 2+-oriented H2

k+n

 
fRg
i�;n

Number of i�-oriented H2
k approximations in the subregion R of a 2+-oriented H2

k+n

Hk Number of horizontal edges in a 2-oriented H2
k

Vk Number of vertical edges in a 2-oriented H2
k

hk(i) Number of horizontal edges in the i-th row from the topmost of a 2+-oriented H2
k

vk(i) Number of vertical edges in the i-th column from the leftmost of a 2+-oriented H2
k

N2(k; k + n) Exact number of clusters covering a 2k�2k square in a 2k+n�2k+n grid region

Table 2: De�nition of Symbols

4.2 Formal derivation

We adopt the notion of orientations of Hd
k given in Section 3 and extend so that it can be used to derive

inductions.

Notation 4.3 An i-oriented Hd
k is called i+-oriented (or i�-oriented) if the i-th coordinate of its start point is

not greater (or less) than that of any grid point in the Hd
k.

Figure 8 illustrates 1+-oriented, 1�-oriented, 2+-oriented and 2�-oriented H2
2 approximations. Note that

either of the two end points can be a start point for each curve.

We begin by deriving N1 and N3. It appears at the �rst glance that the derivation of N1 is simple

because each edge in E1 is cut 2k+1 times. However, the derivation of N1 involves counting the number of

connection edges crossing the boundary between subregion A and the other subregions, as well as the number

of edges inclusive to subregion A. We accomplish this by counting the number of edges in the complementary

11
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Figure 8: Four di�erent orientations of H2
2

set E1 (that is, fedges in H2
k+ng � E1). Since E1 consists of edges in 4(2n � 1) H2

k approximations in

boundary subregions B through I and connection edges in E3, jE1j is equal to 4(2n � 1)� (22k � 1) + jE3j .
To �nd the number of connection edges in E3, we de�ne the number of connection edges in di�erent parts

of the boundary subregions. In the following, without loss of generality, we assume that the grid region is

2+-oriented H2
k+n.

Notation 4.4 Let tn, bn and sn denote the number of connection edges in the top boundary (i.e., subregions

fB,F,Hg), in the bottom boundary (i.e., subregions fC,G,Ig), and in the left or right boundary (i.e., subregions

fD,F,Gg or fE,H,Ig) of a 2+-oriented H2
k+n, respectively.

Note that the number of connection edges in subregions fD,F,Gg and the number of connection edges in

subregions fE,H,Ig are identical, because the 2+-oriented H2
k+n is vertically self-symmetric.

Lemma 4 For any positive integer n,

tn = 2n�1 and bn + 2sn = 2(2n � 1): (5)

Proof. Given in Appendix A.

From Lemma 4, the number of connection edges inclusive to the boundary subregions (i.e., E3) is given

by tn + bn + 2sn = 5 � 2n�1 � 2. From this, we can obtain the number of edges in E1 as well as E3 and

hence the number of cuts from E1 and E3. The results are presented in the following lemma.

Lemma 5 The numbers of edge cuts from E1 and E3 are

N1 = 2(2n � 2)223k + 3(2n � 2)2k (6)

N3 = 2n+k + 4(2n � 1) (7)

Proof. Given in Appendix A.

All that we need to derive N2 is then to count the number of vertical edges in subregions fB,Cg and the

number of horizontal edges in subregions fD,Eg. No connection edges in these subregions are involved. Since

the number of horizontal (or vertical) edges in a H2
k is determined by its orientation, it is necessary to �nd

the number of H2
k approximations of di�erent orientations in subregions fB,C,D,Eg. In the following, we give

notations for the number of horizontal and vertical edges in a H2
k, and the number of H2

k approximations of

di�erent orientations in the boundary subregions in Figure 7.

Notation 4.5 Let Hk and Vk denote the number of horizontal and vertical edges in a 2-oriented H2
k, respec-

tively.

By de�nition, the numbers of horizontal and vertical edges in a 1-oriented H2
k are Vk and Hk, respectively.

Notation 4.6 For a set of subregions fR1; R2; : : : ; Rjg in Figure 7, let  
fR1;R2;:::;Rjg

i+;n
and  

fR1;R2;:::;Rjg

i�;n
denote

the number of i+-oriented and i�-oriented H2
k approximations in those subregions, respectively.
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Lemma 6 Given a 2+-oriented H2
k+n as depicted in Figure 7,

 
fBg
2+;n

= 2n � 2 (8)

 
fDg
1+;n

+  
fEg
1�;n

+  
fCg
2+;n

= 2n � 2 (9)

 
fCg
1+;n

+  
fCg
1�;n

+  
fD;Eg
2+;n

+  
fD;Eg
2�;n

= 2(2n � 2): (10)

Proof. Given in Appendix A.

From Lemma 6, a closed-form expression of N2 is derived in the following lemma.

Lemma 7 The number of edge cuts from E2 is

N2 = 2(2n � 2)23k � 2(2n � 2)2k: (11)

Proof. Given in Appendix A.

Now we consider the number of cuts from E4 and E5. The edges in these groups are cut di�erent

numbers of times depending on their relative locations within the H2
k which they belong to. Consequently,

the expressions for N4 and N5 include such terms as i � vk(i) and i � hk(i). The de�nitions of vk(i) and

hk(i) are given below. We call H2
k approximations having such terms gradients.

Notation 4.7 Let hk(i) be the number of horizontal edges in the i-th row from the topmost, and vk(i) be the

number of vertical edges in the i-th column from the leftmost of a 2+-oriented H2
k.

(a) u-gradient2 (b) d-gradient2 (c) s-gradient2

Figure 9: Three di�erent gradients and cutting windows

To derive the closed-form expressions for N4 and N5, we �rst de�ne di�erent types of gradients. Consider

the 2+-oriented H2
k approximations in subregions fB,C,D,Eg. From observations A6 and A7, the number

of cuts from the horizontal edges in a 2+-oriented H2
k in subregion B is

P2k

i=1 2ihk(i). Likewise, the number

of cuts from the horizontal edges in a 2+-oriented H2
k in subregion C is

P2k

i=1 2(2
k � i + 1)hk(i), and the

number of cuts from the vertical edges in a 2+-oriented H2
k in subregion D or E is

P2k

i=1 2ivk(i). The number

of cuts from vertical edges is the same in both subregions D and E, because a 2+-oriented H2
k is vertically

self-symmetric. Based on this, we de�ne three types of gradients for a 2+-oriented H2
k:

De�nition 4.1 (i) A 2+-oriented H2
k is called u-gradientk if each of its horizontal edges in the i-th row

from the topmost is cut i or 2i times.

(ii) A 2+-oriented H2
k is called d-gradientk if each of its horizontal edges in the i-th row from the topmost

is cut 2k � i+ 1 or 2(2k � i+ 1) times.

13



(iii) A 2+-oriented H2
k is called s-gradientk if each of its vertical edges in the i-th column from either the

leftmost or rightmost is cut i or 2i times.

Figure 9 illustrates the three di�erent gradients (u-gradient2, d-gradient2 and s-gradient2) and the cutting

boundaries of a sliding window. These de�nitions can be applied to the H2
k approximations of di�erent

orientations as well, by simply rotating the directions. For example, a 1+-oriented H2
k in subregion D is

d-gradientk, and a 2�-oriented H2
k in subregion D is s-gradientk.

Lemma 8 Let �k =
P2k

i=1 ihk(i), �k =
P2k

i=1(2
k � i+ 1)hk(i) and k =

P2k

i=1 ivk(i). Then,

�k + �k = (2k + 1)Hk and k =
1

2
(2k + 1)Vk (12)

Proof. Given in Appendix A.

Next, we need to know the number of gradients of each type in the boundary subregions B through I so

that we can derive N4 and N5. For H2
k approximations in subregions fB,C,D,Eg,

� Every 2+-oriented H2
k in B is u-gradientk.

� Every 2+-oriented H2
k in C, 1+-oriented H2

k in D, and 1�-oriented H2
k in E is d-gradientk.

� Every 1+-oriented or 1�-oriented H2
k in C, and 2+-oriented or 2�-oriented in fD,Eg is s-gradientk.

The H2
k approximations in subregions fF,G,H,Ig are dual-type gradients. In other words,

� Each of the 2+-oriented H2
k approximations in fF,Hg is both u-gradientk and s-gradientk.

� TheH2
k in G is both d-gradientk and s-gradientk because the subgrid is either 2

+-oriented or 1+-oriented.

� TheH2
k in I is both d-gradientk and s-gradientk because the subgrid is either 2

+-oriented or 1�-oriented.

Thus, in subregions fB,C,D,Eg, the number of u-gradientk approximations is  
fBg
2+;n

, the number of d-gradientk

approximations is  
fCg
2+;n

+ 
fDg
1+;n

+ 
fEg
1�;n

, and the number of s-gradientk approximations is  
fD;Eg
2+;n

+ 
fD;Eg
2�;n

+

 
fCg
1�;n

+  
fCg
1+;n

. In subregions fF,G,H,Ig, the number of u-gradientk approximations is two, the number of

d-gradientk approximations is two, and the number of s-gradientk approximations is four. From this obser-

vation, and Lemma 6 and Lemma 8, it follows that

Lemma 9 The numbers of edge cuts from E4 and E5 are

N4 = 2(2n � 2)(2k + 1)(22k � 1) (13)

N5 = 2(2k + 1)(22k � 1) (14)

Proof. Given in Appendix A.

Finally, in the following theorem, we present a closed-form expression of the average number of clusters.

Theorem 2 Given a 2k+n�2k+n grid region, the average number of clusters within a 2k�2k query window

is

N2(k; k + n) =
(2n � 1)223k + (2n � 1)22k + 2n

(2k+n � 2k + 1)2
(15)

Proof. From Equation (4),

N2(k; k + n) = (N1 +N2 +N3 +N4 +N5 + 2)=2(2k+n � 2k + 1)2

= ((2n � 1)223k + (2n � 1)22k + 2n)=(2k+n � 2k + 1)2:

For increasing n, N2(k; k + n) asymptotically approaches a limit of 2k, which is the side length of the

square query region. This matches the asymptotic solution given in Corollary 1(ii) for d = 2.
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5 Experimental Results

To demonstrate the correctness of the asymptotic and exact analyses presented in the previous sections,

we carried out simulation experiments for range queries of various sizes and shapes. The objective of our

experiments was to evaluate the accuracy of the formulas given in Theorem 1 and Theorem 2. Speci�cally,

we intended to show that the asymptotic solution is an excellent approximation for general d-dimensional

range queries of arbitrary sizes and shapes. We also intended to validate the correctness of the exact solution

for a 2-dimensional 2k�2k square query.

5.1 Arrangements of experiments

To obtain exact measurements of the average number of clusters, it was required that we average the number

of clusters within a query region at all possible positions in a given grid space. Such exhaustive simulation

runs allowed us to validate empirically the correctness of the exact formula given in Theorem 2 for a 2k�2k

square query.

S

S S
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S/2 S

S

S

S

S

S

S/2

S/2

S

(a) square (b) polygon (c) circle (d) cube (e) polyhedron

Figure 10: Illustration of sample query shapes

However, the number of all possible queries is exponential on the dimensionality. In a d-dimensional

N�N�: : :�N grid space, the total number of distinct positions of a d-dimensional k�k�: : :�k hypercubic

query is (N � k + 1)d. Consequently, for a large grid space and a high dimensionality, each simulation run

may require processing an excessively large number of queries, which in turn makes the simulation take too

long. Thus, we carried out exhaustive simulations only for relatively small 2-dimensional and 3-dimensional

grid spaces. Instead, for relatively large or high dimensional grid spaces, we did statistical simulation by

random sampling of queries.

For query shapes, we chose squares, circles and concave polygons for 2-dimensional cases, and cubes,

concave polyhedra and spheres for 3-dimensional cases. Figure 10 illustrates some of the query shapes used

in our experiments. In higher dimensional spaces, we used hypercubic and hyperspherical query shapes

because it was relatively easy to identify the query regions by simple mathematical formulas.

5.2 Empirical validation

The �rst set of experiments was carried out in 2-dimensional grid spaces with two di�erent sizes. The table

in Figure 11(a) compares the empirical measurements with the exact and asymptotic formulas for a 2k�2k

square query. The second column of the table contains the average numbers of clusters obtained by an

exhaustive simulation performed on a 1024�1024 grid space. The numbers in the third and fourth columns

were computed by the formulas in Theorem 1 and Theorem 2, respectively. The numbers from the simulation

are identical to those from the exact formula ignoring round-o� errors. Moreover, by comparing the second

and third columns, we can measure how closely the asymptotic formula reects the reality in a �nite grid

space.

Figure 11(b) compares three di�erent 2-dimensional query shapes: squares, circles and concave polygons.

The average number of clusters were obtained by a statistical simulation performed on a 32K�32K grid space.

For the statistical simulation, a total of 200 queries were generated and placed randomly within the grid

space for each combination of query shape and size. With a few exceptional cases, the numbers of clusters

form a linear curve for each query shape; the linear correlation coeÆcients are 0.999253 for squares, 0.999936
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query empirical asymptotic exact

21�21 1.998534 2 2091524/1046529

22�22 3.996328 4 4165936/1042441

23�23 7.992257 8 8266304/1034289

24�24 15.984206 16 16273216/1018081

25�25 31.967807 32 31521824/986049

(a) Exhaustive simulation (grid: 1024�1024)
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Figure 11: Average number of clusters for 2-dimensional queries

for circles, and 0.999267 for concave polygons. The numbers are almost identical for the three di�erent query

shapes despite their covering di�erent areas. A square covers s2 grid points, a concave polygon 3s2=4 grid

points and a circle approximately �s2=4 grid points.

However, this should not be surprising, as the three query shapes have the same length of perimeter for a

given side length s. For a circular query of diameter s, we can always �nd a rectilinear polygon that contains

the same set of grid points as the circular query region. And it is always the case that the perimeter of

the rectilinear polygon (as shown in Figure 10(c)) is equal to that of a square of side length s. In general,

in a 2-dimensional grid space, the perimeter of a rectilinear polygon is greater than or equal to that of the

minimum bounding rectangle (MBR) of the polygon. This justi�es the general approach of using a minimum

bounding rectangle to represent a 2-dimensional range query, because the use of an MBR does not increase

the actual number of clusters (i.e., the number of non-consecutive disk accesses).
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Figure 12: Average number of clusters for higher dimensional queries

A similar set of experiments was carried out in higher dimensional grid spaces. The results in Figure 12(a)

were obtained by a statistical simulation performed on a 32K�32K�32K grid space. For the statistical

simulation, a total of 200 queries were generated and placed randomly within the grid space for each com-

bination of query shape and size. Those in Figure 12(b) were obtained by a statistical simulation with 200

random d-dimensional 3�3�: : :�3 hypercubic queries in a d-dimensional 32K�32K�: : :�32K grid space

(2 � d � 10).

In Figure 12(a), the numbers of clusters form quadratic curves for all the three query shapes, but with
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slightly di�erent coeÆcients for the quadratic term. To determine the quadratic functions, we applied the

least-square curve �tting method for each query shape. The approximate quadratic functions were obtained

as follows.

fcube(s) = 1:02307s2+ 1:60267s+ 1:93663

fpoly(s) = 0:947168s2+ 1:26931s+ 1:95395

fsphere(s) = 0:816674s2+ 1:27339s+ 2:6408:

The approximate function fcube(s) for a cubic query con�rms the asymptotic solution given in Corollary 1(ii),

as it is quite close to s2. Furthermore, Figure 12(b) illustrates that the empirical results from the hyper-

cubic queries coincide with the formula (sd�1) even in higher dimensional spaces.2 The numbers from the

experiments were less than 2 percent o� from the formula.

In contrast, the functions fpoly(s) and fsphere(s) for concave polyhedral and spherical queries are lower

than s2. The reason is that, unlike in the 2-dimensional case, the surface area of a concave polyhedron or a

sphere is smaller than that of its minimum bounding cube. For example, the surface area of the polyhedron

illustrated in Figure 10(e) is 11
2
s2, while that of the corresponding cube is 6s2. For a sphere of diameter

s = 16, the surface area (i.e., the number of grid points on the surface of the sphere) is 1248. This is far

smaller than the surface area of the corresponding cube, which is 6�162. Note that the coeÆcients of the

quadratic terms in fpoly(s) and fsphere(s) are fairly close to
11
12

= 0:9166 � � � and 1248
6�322 = 0:8125, respectively.

This indicates that, in a d-dimensional space (d � 3), accessing the minimum bounding hyper-rectangle of

a given query region may incur additional non-consecutive disk accesses, and hence supports the argument

made in [15] that the minimum bounding rectangle may not be a good approximation of a non-rectangular

object.

5.3 Comparison with the Gray-coded and z curves

It may be argued that it is not convincing to make a de�nitive conclusion that the Hilbert curve is better or

worse than others solely on the basis of the average behaviors, because the clustering achieved by the Hilbert

curve might have a wider deviation from the average than other curves. Therefore, it is desirable to perform

a worst-case analysis to determine the bounds on the deviation. A full-edged worst-case analysis, however,

is beyond the scope of this paper. Instead, we measured the worse-case numbers of clusters for the Hilbert

curve, and compared with those for the Gray-coded and z curves in the same simulation experiments.

Figure 13 and Figure 14 show the worst-case and average numbers of clusters, respectively. Each �gure

presents the results from an exhaustive simulation performed on a 1K�1K 2-dimensional space and a

statistical simulation performed on a 32K�32K�32K 3-dimensional space. The Hilbert curve achieves

much better clustering than the other curves in both the worst and average cases. For example, for a

2-dimensional square query, the Hilbert curve signi�cantly reduced the numbers of clusters, yielding an

improvement of up to 43 percent for the worst-case behaviors, and 48 percent for the average cases. For a

3-dimensional spherical query, the Hilbert curve achieved an improvement of up to 28 percent from the z

curve and 18 percent from the Gray-coded curve for the worst cases, and up to 31 percent from the z curve

and 22 percent from the Gray-coded curve for the average cases.

Although it is not the focus of this paper, it is worth noting that the Gray-coded curve was not always

better than the z curve, which is in contrast to a previous study [14] that the Gray-coded curve achieves

better clustering than the z curve for a 2-dimensional 2�2 square query. In particular, for 2-dimensional

circular queries (Figure 13(b) and Figure 14(b)), the Gray-coded curve was worse than the z curve in both

the worst and average cases. On the other hand, for 2-dimensional square queries, the Gray-coded curve was

better than the z curve for the average clustering only by negligible amounts (the two measurements were

almost identical, as shown in Figure 14(a)). Furthermore, it was surprising that both the Gray-coded and

z curves performed exactly the same for the worst-case clustering (the two measurements were completely

identical, as shown in Figure 13(a)). In a 3-dimensional space, however, the Gray-coded curve was clearly

better than the z curve for both types of queries in both the worst and average cases.

2The exponential growth gives rise to the question of whether using the Hilbert curve is a practical technique for clustering

high dimensional data objects. For instance, in a 10-dimensional space, the expected number of clusters was 19,683.
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Figure 13: Worst-case number of clusters for three di�erent space-�lling curves

5.4 Summary

The main conclusions from our experiments are:

� The exact solution given in Theorem 2 matches exactly the experimental results from exhaustive

simulations for the square queries of size 2k�2k. (See Figure 11(a).)

� The asymptotic solutions given in Theorem 1 and Corollary 1 provide excellent approximations for

d-dimensional queries of arbitrary shapes and sizes. (See Figure 11(b) and Figure 12.) For example,

the relative errors did not exceed 2 percent for d-dimensional (2 � d � 10) hypercubic queries.

� Assuming that blocks are arranged on disk by the Hilbert ordering, accessing the minimum bounding

rectangles of a d-dimensional (d � 3) query region may increase the number of non-consecutive accesses,

whereas this is not the case for a 2-dimensional query.

� The Hilbert curve outperforms the z and Gray-coded curves by a wide margin for both the worst and

average case clustering. (See Figure 13 and Figure 14.)

� For 3-dimensional cubic and spherical queries, the Gray-coded curve outperformed the z curve for both

the worst-case and average clustering. However, the clustering by the Gray-coded curve was almost

identical to that by the z curve for 2-dimensional square queries (in Figure 13(a) and Figure 14(a)),

and clearly worse for 2-dimensional circular queries (in Figure 13(b) and Figure 14(b)).
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Figure 14: Average number of clusters for three di�erent space-�lling curves

6 Conclusions

We have studied the clustering property of the Hilbert space-�lling curve as a linear mapping of a multidimen-

sional space. Through algebraic analysis, we have provided simple formulas that state the expected number

of clusters for a given query region, and also validated their correctness through simulation experiments.

The main contributions of this paper are:

� Theorem 2 generalizes the previous work done only for a 2�2 query region [14], by providing an exact

closed-form formula for 2k�2k square queries for any k (k � 1). The asymptotic solution given in

Theorem 1 further generalizes it for d-dimensional polyhedral query regions (d � 2).

� We have proved that the Hilbert curve achieves better clustering than the z curve in a 2-dimensional

space; the average number of clusters for the Hilbert curve is one fourth of the perimeter of a query

rectangle, while that of the z curve is one third of the perimeter plus two thirds of the side length of the

rectangle in the unfavored direction [23]. Furthermore, by simulation experiments, we have shown that

the Hilbert curve outperforms both the z and Gray-coded curves in 2-dimensional and 3-dimensional

spaces. We conjecture that this trend will hold even in higher dimensional spaces.

� We have shown that it may incur extra overhead to access the minimum bounding hyper-rectangle for

a d-dimensional non-rectangular query (d � 3), because it may increase the number of clusters (i.e.,

non-consecutive disk accesses).

The approaches used in this paper can be applied to other space-�lling curves. In particular, the basic

intuitions summarized in Remark 3.1 and Remark 4.1 are true for any space-�lling curves.
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From a practical point of view, it is important to predict and minimize the number of clusters because it

determines the number of non-consecutive disk accesses, which in turn incur additional seek time. Assuming

that blocks are arranged on disk by the Hilbert ordering, we can provide a simple measure that depends

only on the perimeter or surface area of a given query region and its dimensionality. The measure can then

be used to predict the required disk access behaviors and thereby the total access time.

The full-edged analysis of the worst-case behaviors for the Hilbert curve is left for future research.

Future work also includes the extension of the exact analysis for d-dimensional spaces (d � 3), and the

investigation of the distribution of distances between clusters.

A Appendix: Proofs

Proof of Lemma 4: A 2+-oriented H2
k+n approximation is composed of four H2

k+n�1 approximations (two

on the top and two on the bottom) and three connection edges. The two H2
k+n�1 approximations on the top

half are 2+-oriented and the two H2
k+n�1 approximations on the bottom half are 1+-oriented on the left and

1�-oriented on the right. Among the three edges connecting the four H2
k+n�1 approximations, the horizontal

edge is not included in the boundary subregion of the H2
k+n, because the edge resides on the 2k+n�1-th row

from the topmost of the H2
k+n. The other two vertical connection edges are on the leftmost and rightmost

columns and included in the boundary subregion of the H2
k+n. Thus, the main observations are:

(i) The number of connection edges in the top boundary subregion of the 2+-oriented H2
k+n is the sum of

those in the top boundary subregions of the two 2+-oriented H2
k+n�1 approximations.

(ii) The number of connection edges in the bottom boundary subregion of the 2+-oriented H2
k+n is the

sum of those in the bottom boundary subregions of the 1+-oriented H2
k+n�1 and 1�-oriented H2

k+n�1

approximations.

(iii) The number of connection edges in the left (or right) boundary subregion of the 2+-oriented H2
k+n is

the sum of those in the left (or right) boundary subregions of the 2+-oriented H2
k+n�1 and 1+-oriented

(or 1�-oriented) H2
k+n�1 approximations, plus one for a connection edge.

Since the bottom boundary subregion of a 1+-oriented H2
k+n�1 is equivalent to the right boundary subregion

of a 2+-oriented H2
k+n�1 and so on, it follows that

tn = 2� tn�1

bn = 2� sn�1

sn = sn�1 + bn�1 + 1:

Since t1 = 1; b1 = 0 and s1 = 1, we obtain tn = 2n�1 and bn + 2sn = 2(bn�1 + 2sn�1) + 2, which yields

bn + 2sn = 2(2n � 1).

Proof of Lemma 5: The H2
k+n and H2

k approximations contain 22(k+n)� 1 and 22k � 1 edges, respectively.

Since there are a total of 4(2n�1) H2
k approximations in the boundary subregions, the total number of edges

in E1 is given by

(22(k+n) � 1)� 4(2n � 1)(22k � 1)� (5� 2n�1 � 2) = 22k(2n � 2)2 + 3(2n�1 � 1):

Because each edge in E1 is cut 2k+1 times, it follows that

N1 = 2k+1(22k(2n � 2)2 + 3(2n�1 � 1)) = 2(2n � 2)223k + 3(2n � 2)2k:

Among the 5�2n�1� 2 edges in E3, tn edges are cut 2k+1 times, and the other bn+2sn edges are cut twice.

Therefore,

N3 = 2k+1tn + 2(bn + 2sn) = 2n+k + 4(2n � 1):
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Proof of Lemma 6: Consider a 2+-oriented H2
k+n, which is composed of four H2

k+n�1 approximations and

three connection edges. The number of 2+-oriented H2
k approximations in the top subregions (i.e., fB,F,Hg)

of the 2+-oriented H2
k+n is twice the number of 2+-oriented H2

k approximations in the top subregions of

the 2+-oriented H2
k+n�1. This is because the top half of the 2+-oriented H2

k+n consists of two 2+-oriented

H2
k+n�1 approximations. Thus the recurrence relation is  

fB;F;Hg
2+;n

= 2�  
fB;F;Hg
2+;n�1 . Since  

fB;F;Hg
2+;1

= 2, we

obtain

 
fB;F;Hg
2+;n

= 2n:

The bottom half of the 2+-oriented H2
k+n consists of a 1+-oriented H2

k+n�1 and a 1�-oriented H2
k+n�1.

In the bottom boundary subregions fC,G,Ig, each 1�-oriented H2
k in the 1+-oriented H2

k+n�1 approximation

becomes a 2+-oriented H2
k in the 2+-oriented H2

k+n approximation; each 1+-oriented H2
k in the 1�-oriented

H2
k+n�1 approximation becomes a 2+-oriented H2

k in the 2+-oriented H2
k+n approximation. No other than

the 1�-oriented and 1+-oriented H2
k approximations in the H2

k+n�1 approximations becomes a 2+-oriented

H2
k in the H2

k+n. Thus, it follows that

 
fC;G;Ig
2+;n

=  
fC;G;Ig
1�;n�1 +  

fC;G;Ig
1+;n�1 :

Since there exist no 2�-orientedH2
k approximations in the bottom boundary subregions,  

fC;G;Ig
2�;n

= 0. Thus,

 
fC;G;Ig
2+;n

+  
fC;G;Ig
1�;n

+  
fC;G;Ig
1+;n

= 2n:

Similarly, on the left boundary subregion, we obtain the following recurrence relations.

 
fD;F;Gg
1+;n

=  
fD;F;Gg
2+;n�1 +  

fD;F;Gg
2�;n�1

 
fD;F;Gg
1+;n

+  
fD;F;Gg
2+;n

+  
fD;F;Gg
2�;n

= 2n:

Then, from the above four recurrence relations,

 
fC;G;Ig
2+;n

+ 2 
fD;F;Gg
1+;n

= (2n�1 �  
fC;G;Ig
2+;n�1 ) + 2(2n�1 �  

fD;F;Gg
1+;n�1 )

= (2n�2 +  
fC;G;Ig
2+;n�2 ) + 2(2n�2 +  

fD;F;Gg
1+;n�2 )

= 3� 2n�2 + ( 
fC;G;Ig
2+;n�2 + 2 

fD;F;Gg
1+;n�2 ):

Since  
fC;G;Ig
2+;1

+ 2 
fD;F;Gg
1+;1

= 2 and  
fC;G;Ig
2+;2

+ 2 
fD;F;Gg
1+;2

= 4, we obtain

 
fC;G;Ig
2+;n

+ 2 
fD;F;Gg
1+;n

= 2n:

From  
fE;H;Ig
1�;n

=  
fD;F;Gg
1+;n

due to the self-symmetry of the 2+-oriented H2
k+n, it follows that

 
fC;G;Ig
2+;n

+  
fD;F;Gg
1+;n

+  
fE;H;Ig
1�;n

=  
fC;G;Ig
2+;n

+ 2 
fD;F;Gg
1+;n

= 2n:

Now consider subregions fF,G,H,Ig. The H2
k approximations in F,H are always 2+-oriented, the H2

k in G

is either 2+-oriented or 1+-oriented, and the H2
k in I is either 2+-oriented or 1�-oriented. Thus,  

fF;Hg
2+;n

= 2

and  
fG;Ig
2+;n

+  
fG;Ig
1+;n

+  
fG;Ig
1�;n

= 2. Therefore,

 
fBg
2+;n

=  
fB;F;Hg
2+;n

�  
fF;Hg
2+;n

= 2n � 2

 
fCg
2+;n

+  
fDg
1+;n

+  
fEg
1�;n

= ( 
fC;G;Ig
2+;n

+  
fD;F;Gg
1+;n

+  
fE;H;Ig
1�;n

)� ( 
fG;Ig
2+;n

+  
fG;Ig
1+;n

+  
fG;Ig
1�;n

)

= 2n � 2:

So far we have derived the �rst two equations given in this lemma.

Finally, to derive the third equation, consider subregions fB,C,D,Eg. Since the total number of H2
k

approximations in those subregions is 4(2n � 2),

 
fB;C;D;Eg
2+;n

+  
fB;C;D;Eg
2�;n

+  
fB;C;D;Eg
1�;n

+  
fB;C;D;Eg
1+;n

= 4(2n � 2):
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There exist no 2�-oriented H2
k in fB,Cg, no 1�-oriented H2

k in fB,Dg, and no 1+-oriented H2
k in fB,Eg. That

is,  
fB;Cg
2�;n

=  
fB;Dg
1�;n

=  
fB;Eg
1+;n

= 0. Therefore,

 
fD;Eg
2+;n

+  
fD;Eg
2�;n

+  
fCg
1�;n

+  
fCg
1+;n

= 4(2n � 2)� ( 
fB;Cg
2+;n

+  
fB;Cg
2�;n

+  
fB;D;Eg
1�;n

+  
fB;D;Eg
1+;n

)

= 4(2n � 2)� ( 
fB;Cg
2+;n

+  
fEg
1�;n

+  
fDg
1+;n

)

= 2(2n � 2):

Proof of Lemma 7: Every H2
k approximation in subregion B is 2+-oriented, and there exists no 2�-oriented

H2
k approximation in subregion C. Thus, the number of vertical edges in subregions fB,Cg is the sum of

 
fB;Cg
2+;n

Vk and ( 
fCg
1+;n

+  
fCg
1�;n

)Hk. Likewise, the number of horizontal edges in subregions fD,Eg is the sum

of ( 
fD;Eg
2+;n

+  
fD;Eg
2�;n

)Hk and ( 
fDg
1+;n

+  
fEg
1�;n

)Vk , because there exist no 1�-oriented H2
k in subregion D and

no 1+-oriented H2
k in subregion E. Thus, the total number of edges in E2 is given by

( 
fB;Cg
2+;n

+  
fDg
1+;n

+  
fEg
1�;n

)Vk + ( 
fCg
1+;n

+  
fCg
1�;n

+  
fD;Eg
2+;n

+  
fD;Eg
2�;n

)Hk

= 2(2n � 2)(Hk + Vk) (by Lemma 6).

Each edge in E2 is cut 2k times and Hk + Vk = 22k � 1. Therefore,

N2 = 2(2n � 2)(22k � 1)2k = 2(2n � 2)23k � 2(2n � 2)2k:

Proof of Lemma 8: First, �k + �k =
P2k

i=1 ihk(i) +
P2k

i=1(2
k � i+ 1)hk(i) =

P2k

i=1(2
k + 1)hk(i). From the

de�nition of Hk, Hk =
P2k

i=1 hk(i). Therefore,

�k + �k = (2k + 1)Hk:

Second, k =
P2k�1

i=1 ivk(i) +
P2k

i=2k�1+1 ivk(i) =
P2k�1

i=1 ivk(i) +
P2k�1

i=1 (2k�1 + i)vk(2
k�1 + i). Since 2-

oriented H2
k approximations are vertically self-symmetric, vk(2

k � i+ 1) = vk(i) holds for any i (1 � i �

2k�1): Thus, k =
P2k�1

i=1 ivk(i) +
P2k�1

i=1 (2k�1 + i)vk(2
k�1 � i+ 1) =

P2k�1

i=1 ivk(i) +
P2k�1

i=1 (2k � i+1)vk(i).

From the de�nition of Vk and self-symmetry, Vk = 2
P2k�1

i=1 vk(i). Therefore,

k =

2k�1X
i=1

(2k + 1)vk(i) =
1

2
(2k + 1)Vk:

Proof of Lemma 9: In E4, the number of horizontal cuts from a single u-gradientk is 2��k, the number of
horizontal cuts from a single d-gradientk is 2� �k, and the number of vertical cuts from a single s-gradientk
is 2� k. Thus,

N4 = 2�k 
fBg
2+;n

+ 2�k( 
fCg
2+;n

+  
fDg
1+;n

+  
fEg
1�;n

) + 2k( 
fD;Eg
2+;n

+  
fD;Eg
2�;n

+  
fCg
1�;n

+  
fCg
1+;n

)

= 2�k(2
n � 2) + 2�k(2

n � 2) + 4k(2
n � 2) (by Lemma 6)

= 2(2n � 2)(�k + �k + 2k)

= 2(2n � 2)(2k + 1)(Hk + Vk) (by Lemma 8)

= 2(2n � 2)(2k + 1)(22k � 1)

In E5, the number of horizontal cuts from a single u-gradientk is �k, the number of horizontal cuts

from a single d-gradientk is �k, and the number of vertical cuts from a single s-gradientk is k. Thus,

N5 = 2�k + 2�k + 4k = 2(2k + 1)(22k � 1):
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