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Abstract

This paper attempts to address the question of why certain data
ow analysis problems can be solved

eÆciently, but not others. We focus on 
ow-sensitive analyses, and give a simple and general result that

shows that analyses that require the use of relational attributes for precision must be PSPACE-hard in

general. We then show that if the language constructs are slightly strengthened to allow a computation

to maintain a very limited summary of what happens along an execution path, inter-procedural analyses

become EXPTIME-hard. We discuss applications of our results to a variety of analyses discussed in the

literature. Our work elucidates the reasons behind the complexity results given by a number of authors,

improves on a number of such complexity results, and exposes conceptual commonalities underlying

such results that are not readily apparent otherwise.
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1 Introduction

Program analysis involves keeping track of properties of variables at di�erent program points. In general,

the properties of di�erent variables may depend on each other. When tracking such properties, we may
choose to keep track of dependencies between the properties of di�erent variables (leading to analysis

information of the form \[x = a and y = b]; or [x = c and y = d]"), or we may choose to ignore such

dependencies (leading to information of the form \[x = a or x = c]; and [y = b or y = d]"). Jones
and Muchnick refer to the former kind of analyses as relational attributes analyses, and the latter kind

as independent attributes analyses [6]. The tradeo� between these methods is that independent attributes

analyses are usually more eÆcient but less precise than relational attributes analyses.

When addressing a program analysis problem, it is useful to consider the computational complexity

of obtaining a precise (upto symbolic execution) solution to the problem.1 If a precise solution can be
obtained \eÆciently," i.e., in polynomial time, it makes sense to try and �nd an algorithm that obtains

such a solution. If, on the other hand, the existence of eÆcient algorithms to compute precise solutions is

unlikely, it makes sense to sacri�ce precision for eÆciency. Questions about the computational complexity
of various program analyses have been addressed by a number of authors (see Section 5). The current state

of knowledge resulting from these works is, by and large, a set of isolated facts about the complexities of

various analyses. What is missing are insights into the underlying reasons for these results. For example,
Landi's results on the complexity of pointer-induced alias analysis [8, 11] tell us that single-level pointers

are, in some sense, easy to handle, but multi-level pointers are not: however, they don't explain exactly
why multi-level pointers are hard to deal with. The situation is further muddled by the results of Pande

et al., who show that the precise construction of inter-procedural def-use chains becomes diÆcult in the

presence of single-level pointers [15]. In other words, single-level pointers complicate some analyses but
not others, but we don't have any insights into why such pointers are benign in some situations but

problematic in others. Moreover, these results are typically obtained using reductions from problems with

known complexity: di�erent problem choices by di�erent authors, and di�erences in the details of the
reductions for di�erent analysis problems, often make it diÆcult to see whether there are any underlying

conceptual commonalities between di�erent such complexity arguments.

The main contribution of this paper is to elucidate the fundamental reasons why certain program

analyses can be carried out eÆciently (i.e., in polynomial time), while others are diÆcult. We give a simple

and general result that is applicable to a wide variety of intra- and inter-procedural 
ow-sensitive analyses.
This is able to explain, for example, why single-level pointers can be handled eÆciently in the context

of pointer-induced alias analysis [8, 11] but not for def-use chains [15]. With very little conceptual and
notational e�ort, a number of complexity results given in the literature [8, 11, 12, 13, 15] fall out directly

as corollaries of this result. Moreover, for several of these analyses, we are able to improve signi�cantly

on the known complexity results reported in the literature [12, 13, 15]. For example, we show that the
following analyses are EXPTIME-complete: inter-procedural pointer alias analysis in the presence of two-

level pointers (Corollary 4.5; previous best result: PSPACE-hard [8]), inter-procedural reaching de�nitions

in the presence of single-level pointers (Corollary 4.6; previous best result: NP-hard [15]), and inter-
procedural liveness analysis and available expressions in the presence of reference parameters (Corollary

4.8; previous best result: NP-hard [13]). In the process, our work exposes conceptual commonalities

underlying a variety of program analyses.

2 Preliminaries

From the perspective of program analysis, we may be interested in two di�erent kinds of information

about program variables. We may want to know something about a particular variable at a particular

1The determination of whether some (nontrivial) property will actually hold at a particular program point at runtime is, of

course, undecidable. A standard assumption in the data
ow analysis literature is that all \realizable" paths in a program|by
which we mean all paths subject to the constraint that procedure calls are matched up correctly with returns|are executable,
or, equivalently, that either branch of any conditional can always be executed. This assumption, which Barth referred to as

precision \upto symbolic execution" [2], usually suÆces to sidestep the problem of undecidability, and \precision" of program
analyses is typically de�ned with respect to this assumption.
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program point, e.g., in the context of constant propagation [1]; or we may want to know something about

the relationships among some set of variables, e.g., whether or not two variables can be guaranteed to
have di�erent values at a particular program point (useful for reasoning about pointers). We refer to the

problem of determining the former kind of information as the single value problem, and that of determining

the latter kind of information as the simultaneous value problem. For the purposes of this paper, we focus
on rather restricted classes of such problems, under the assumption, standard in data
ow analysis, that all

paths in the program being analyzed are executable:

De�nition 2.1 Suppose we are given a program P and an initial assignmentEinit of values for the variables

of P . Let x; x1; : : : ; xn be variables in P , c; c1; : : : ; cn be values, and let p be a program point in P .

A single value problem for P is a problem of the form: \is there an execution path from the entry node

of P to p, with initial variable assignment Einit , such that \x = c" holds when control reaches p?"

A simultaneous value problem for P is a problem of the form: \is there an execution path from the entry

node of P to p, with initial variable assignment Einit , such that \x1 = c1 ^ x2 = c2 ^ � � � ^ xk = ck" holds

when control reaches p?"

In particular, simultaneous value problems where all of the constants c1; : : : ; ck are either 0 or 1 are referred

to as binary simultaneous value problems.

It seems intuitively obvious that solving a simultaneous value problem will require a relational attributes

analysis; we will show, however, that while an independent attributes analysis is often adequate for a single

value problem, there are some situations where it is necessary to resort to relational attributes analyses
even for single value problems.

3 Intra-procedural and Non-recursive Inter-procedural Analyses

3.1 Intra-procedural Analysis

In this section we consider a simple language Base where variables are all integer-valued, and a program

consists of a single procedure containing (labelled) statements that can be assignments, conditionals, or

unconditional jumps.2 Since our primary interest is in data
ow analyses, we make the standard assumption
that all paths in the program are executable, i.e., that either branch of a conditional may be executed at

runtime, and omit the actual expression being tested in a conditional. To keep the discussion simple and
focused, we restrict our attention to expressions that are variables or constants (assuming that an analysis

is able to do arithmetic adds an independent source of complexity that can obscure the essence of our

results):

Prog ::= Stmt

Stmt ::= Var = Expr;

j if ( - ) Stmt1 ... else if ( - ) Stmti ... else Stmtn

j Label: Stmt

j goto Label;

j fStmt1; ...; Stmtn;g
Expr ::= Const j Var

Const ::= 0 j 1

The simplest analyses are those where there is no need to keep track of relationships between variables:

Theorem 3.1 The single value problem for programs in Base can be solved in polynomial time, provided

that primitive operations of the analysis can be carried out in polynomial time.

2We choose this syntax for simplicity: with a small amount of code duplication, it is straightforward to express our programs
in a subset of C consisting of assignments, conditionals, and while loops together with break and continue statements.
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Proof: A straightforward independent attribute analysis suÆces in this case. Jones and Muchnick ([6],

Section 12.2) show that this can be carried out in time quadratic in the size of the program, provided
that primitive operations of the analysis, e.g., checking whether two abstract domain elements are equal

(which is necessary to determine when a �xpoint has been reached), can be carried out in O(1) time. The

requirement of constant-time operations can be relaxed to allow polynomial-time primitive operations and
still preserve an overall polynomial time complexity.

We next consider the complexity of simultaneous value problems for Base. In this context, we mention
the following result: this is not the central result of this paper, but is of some historical interest because

its proof, given below. is essentially isomorphic to similar NP-hardness results for acyclic programs given

by a number of authors [6, 8, 11, 12, 13, 15]. Applications of this theorem include (intra-procedural) type
inference problems where the type of a variable depends on the types of other variables (see, e.g., [6, 16]).

Theorem 3.5 and Corollary 4.3 give stronger results for more general classes of programs.

Theorem 3.2 The (binary) simultaneous value problem for acyclic programs in Base is NP-complete.

Proof: The proof of NP-hardness is by reduction from the 3-SAT problem, which is the problem of
determining, given a set of clauses ' each containing three literals, whether ' is satis�able. This problem
is known to be NP-complete [5]. Given a formula ' � (u11 _ � � � _ u13) ^ � � � ^ (um1 _ � � � _ um3) over a set
of variables fx1; : : : ; xng, where each of the literals uij is either a variable or its negation, we generate a
program P', with variables fx 1t, . . . , x nt, x 1f, . . . , x nf, c1, . . . , cmg, of the following form:

if ( - ) f x 1t = 0; x 1f = 1; g else f x 1t = 1; x 1f = 0; g
if ( - ) f x 2t = 0; x 2f = 1; g else f x 2t = 1; x 2f = 0; g
...

if ( - ) f x nt = 0; x nf = 1; g else f x nt = 1; x nf = 0; g

if ( - ) c1 = w11;

else if ( - ) c1 = w12;

else c1 = w13;

...

if ( - ) cm = wm1;

else if ( - ) cm = wm2;

else cm = wm3;

L:

Here, wij are de�ned as follows: if the literal uij is a variable xk for some k, then wij = x kt; if the

literal uij is a negated variable xk for some k, then wij = x kf. Intuitively, x it = 1 in P' represents an
assignment of a truth value true to xi in ', while x if = 1 represents a truth value of false. Each path

through the �rst group of conditionals represents a truth assignment for the variables of '. The second

group of conditionals represents the evaluation of the clauses: the ith clause evaluates to true if and only
if there is a path through the ith conditional in the second group that assigns 1 to the variable ci. The

simultaneous value problem we pose at the program point labelled L is

c1 = 1 ^ ...^ cm = 1.

This is true if and only if there is a path through all of the statements in P' that assigns 1 to each of the

ci, i.e., if and only if there is a truth assignment to the variables of ' that causes each of its clauses to

evaluate to true.

To see that the simultaneous value problem is in NP, given any acyclic program in Base we simply

guess a path through the program and check whether the assignments along this path make the problem
true.

The main result of this section is for simultaneous value problems for all programs in Base. We show
that this class of problems is PSPACE-complete: the idea is that given an arbitary polynomial-space-

bounded Turing machine, we can construct a simultaneous value problem over a program in Base that can
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be used to determine whether or not the Turing machine accepts its input. Suppose we are given a single

tape deterministic polynomial-space-bounded Turing machine M = (Q;�;�; Æ; q0; F ), where � is the input
alphabet; � = f0; 1; : : : ; nsg is the tape alphabet, with 0 being the blank symbol; Æ 2 Q�� �! Q���fL;Rg
is the transition function; q0 2 Q is the initial state; and F = fq1g is the set of �nal states, such that M

halts on all inputs x after using at most jxjk cells of the tape. For simplicity we assume that M erases
its tape before halting and that the tape is cyclic, i.e., after the last cell the tape \wraps around" to the

�rst cell: these are not serious restrictions, and it is not diÆcult to see how a Turing machine that does

not satisfy these assumptions can be transformed into one that does. The use of a cyclic tape allows us to
simulate the movement of the tape head to the left (respectively, right) by rotating the tape to the right

(respectively, left), so that the tape cell being scanned by the head is always cell 0: this simpli�es the

simulation of the Turing machine, since we don't have to keep track of the position of the tape head. We
construct a program PM;x that emulates M on an input x. This program contains three sets of (boolean)

variables:

1. Q0; : : : ; Qnq, where nq = jQj � 1: These variables represent the current state of M : intuitively, Qi = 1
denotes that M is in state i.

2. T0;0; : : : ; Tnt;ns, where nt = jxjk� 1; ns = j�j� 1: These variables represent the contents of M 's tape:

intuitively, Ti;j = 1 denotes that cell i of M 's tape contains symbol j.

3. X0; : : : ; Xns: these variables are temporaries for copying the tape contents while we \rotate" the tape.

A con�guration where M is in state qk, the tape contents are s0s1 : : : snt, and where M 's tape head is

scanning the mth tape square, is described by the following variable settings:

Qi =

�
1 if i = k

0 otherwise
; Xi = 0; for all i; Ti;j =

�
1 if s(i�m) mod (nt+1) = j

0 otherwise

The code corresponding to M 's move when it is state qi and scanning a cell containing a symbol sj , i.e.,

Æ(qi; sj), is represented by MOV i;j , and is de�ned as follows:

Æ(qi; sj) = (qk; sm; L) Æ(qi; sj) = (qk; sm;R)

Qi = Qk; Qi = Qk;

Qk = 1; Qk = 1;

T0;j = T0;m; T0;j = T0;m;

T0;m = 1; T0;m = 1;

goto copy left; goto copy right;

The �rst two lines of this code update the state variable, the next two lines update the contents of the tape
cell being scanned, and the last line corresponds to the rotation of the tape, simulating the movement of

the tape head.

The program PM;x that emulates M on input x is shown in Figure 1. After initializing the Ti;j
variables appropriately for the input x, the program goes into a loop, repeatedly guessing the current state

and the symbol under the tape head, then updating the state and tape cell, and �nally rotating the tape
appropriately in order to simulate the movement of the tape head. A wrong guess leads to a state where

multiple Qi variables, or multiple Ti;j variables, are set to 1. Once such an \illegal" state is entered, the

structure of the program ensures that the number of variables set to 1 does not decrease, which means
that subsequent states remain illegal. This allows us to use a simultaneous value problem to identify legal

states in PM;x, i.e., those that correspond to valid con�gurations of M , and thence to determine whether
M accepts its input. For notational convenience, we introduce the following abbreviations:
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/* Program PM;x to emulate a given polynomial space-bounded Turing Machine M

on input x */

/* int Q0, ..., Qnq;

int T0;0, ..., Tnt;ns;

int X0, ..., Xns; */

f
T0;0 = � � �; ...; Tnt;ns = � � �; /* initialize Ti;j based on input string x */

Q0 = 1; Q1 = 0; ...Qnq = 0; /* initial state */

Start: /* emulation loop */

X0 = 0; ...; Xns = 0; /* clear temps */

Dispatch: /* transitions based on current state and tape symbol */

if ( - )

f /* Q0 == 1? */

if ( - ) f /* T0;0 == 1? */ MOV 0;0; g
...

else if ( - ) f /* T0;i == 1? */ MOV 0;i; g
...

else if ( - ) f /* T0;ns == 1? */ MOV 0;ns; g
g
else if ( - ) goto Done; /* Q1 == 1? : q1 = final state */

else if ( - )

f /* Q2 == 1? */

...

g
...

else if ( - )

f /* Qnq == 1? */

if ( - ) f /* T0;0 == 1? */ MOV nq;0; g
...

else if ( - ) f /* T0;i == 1? */ MOV nq;i; g
...

else if ( - ) f /* T0;ns == 1? */ MOV nq;ns; g
g

/* copy tape left or right */

copy right:

X0 = T0;0; ...; Xns = T0;ns;

T0;0 = T1;0; ...; T0;ns = T1;ns;

...

Tnt;0 = X0; ...; Tnt;ns = Xns;

goto Start;

copy left:

X0 = Tnt;0; ...; Xns = Tnt;ns;

Tnt;0 = Tnt�1;0; ...; Tnt;ns = Tnt�1;ns;

...

T0;0 = X0; ...; T0;ns = Xns;

goto Start;

Done:

X0 = 0; ...Xns = 0;

End:

g

Figure 1: The program PM;x to emulate Turing machine M on input x
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UnambiguousFinalState � (Q0 = 0 ^ Q1 = 1 ^ Q2 = 0 ^ � � � Qnq = 0)
TempsClear � (X0 = 0 ^ � � � Xns = 0)

TapeClear � ((T0;0 = 1 ^ � � � ^ Tnt;0 = 1)^
(T0;1 = 0 ^ � � � ^ Tnt;1 = 0) ^ � � � ^
(T0;ns = 0 ^ � � � ^ Tnt;ns = 0)).

Intuitively, UnambiguousFinalState is true if and only if the only state variable that is 1 is Q1, corresponding

to the �nal state of M ; TempsClear is true if and only if the variables Xi are all 0; and TapeClear is true if
and only if the contents of the variables Ti;j correspond to all the tape cells of M containing a blank.

Lemma 3.3 A given polynomial-space-bounded Turing machine M accepts its input x if and only if Ac-

ceptingCon�g may hold at the end of the program, where

AcceptingCon�g � UnambiguousFinalState ^ TempsClear ^ TapeClear .

Proof: (sketch) Let a con�guration � of M correspond to a state b� of PM;x, written � � b�, if and only
if the following holds: in �, M is in state qk, scanning tape cell m, with tape contents s0s1 : : : snt; and inb�, PM;x has the following values for its variables, with control at the point labelled Dispatch:

Qi =

�
1 if i = k

0 otherwise
; Xi = 0; for all i; Ti;j =

�
1 if s(i�m) mod (nt+1) = j

0 otherwise

We use the following notation: if M can go from con�guration � to con�guration � via a sequence of

transitions, we write � `�M �; if there is a path in the program PM;x that transforms a state u to a state

v, with control being at the point labelled Dispatch in each case, we write u `�P v.

We �rst show that if, given con�gurations � and � for M and states b� and b� for PM;x such that � � b�
and � � b�, if � `�M � then b� `�P b�. Pictorially:

βα

∼
βα

∗

∗
M

P

∼

The proof is by induction on the length n of the transition sequence of M . The base case, for n = 0,

is trivial. For the inductive case, suppose that the claim holds for transition sequences of length n, and
consider con�gurations �, � and 
 of M and states b� and b
 of PM;x, with � � b� and 
 � b
, such that

� `nM 
 `M �. From the induction hypothesis, we have b� `�P b
. Suppose that in the transition 
 `M �

M goes from state qa, scanning tape symbol c, to state qb. In PM;x, consider state resulting from b
 by
taking the path from the point labelled Dispatch to that referred to as MOV a;c. An examination of the

de�nition of the code corresponding to MOV i;j shows that the resulting state b� of PM;x corresponds to

the con�guration � of M after the n+ 1st transition. The claim follows.

Since, from the de�nition of PM;x, the initial con�guration of M corresponds to the state of PM;x when

control �rst reaches Dispatch, it follows from this that if M accepts its input and halts|i.e., reaches a
con�guration with state q1 and its tape erased (recall that q1 is the �nal state of M , and we assumed

that M would erase its tape prior to halting)|then there is a path in PM;x that leads to a corresponding

state, which is described by AcceptingCon�g. This means that AcceptingCon�g holds at the point End.
Conversely, if there is a path through PM;x such that AcceptingCon�g holds at its end at the point labelled

End, then we can use the sequence of MOV i;j code executed along this path to reconstruct a sequence of
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moves of M leading to acceptance. This establishes that M accepts its input if and only if there is a path

in PM;x, consisting of \good" guesses, at the end of which AcceptingCon�g holds at the point End.

Next, consider any path in PM;x that does not correspond to a valid computation of M . This must

come from a \bad guess" in PM;x of either the state (variables Qi) or the tape symbol (variables Tj;k),

resulting in the execution of a code fragment MOV i;k. It can be seen, from the de�nition of MOV i;k, that
the variable setting that results when control next returns to the point Dispatch has more than one the

variables Qi set to 1, or more than one of the variables Ti;j set to 1. Such a variable setting is called illegal
because it does not represent any valid con�guration. Furthermore, once we obtain an illegal variable

setting we cannot turn this back into a legal one because each of the MOV i;j code segments preserves or

increases the number variables set to 1. This means that AcceptingCon�g will not hold at the end of such
a path in PM;x.

Together, it follows from these that AcceptingCon�g will hold at the point labelled End if and only if
M accepts x.

Lemma 3.4 Given a polynomial-space-bounded Turing machine M and input x, the program PM;x illus-

trated in Figure 1 can be generated in space O(log(jM j+ jxj)).

Proof: Suppose we are given a Turing machine M that, on any input of length n, is p(n)-space-bounded

for some polynomial p(n). The code for the corresponding program PM;x can be divided into three distinct,
and independent, components: the initialization code; the code for the emulation loop, consisting of the

code to clear the variables Xi followed by the code for the transitions of M ; and the code for \rotating" the

tape, labelled copy right and copy left, and the \cleanup" computation at the label Done. The space
requirements for each of these components is as follows:

{ The initialization step consists of j�j � p(jxj) assignments, where each assignment statement is of

�xed size. To generate this code we need a counter of size log(j�j � p(jxj)) = log j�j + log p(jxj)
bits. Since j�j = O(jM j) and log p(n) = O(logn) for any polynomial p(n), this component requires

O(log jM j+ log jxj) space.

{ For the emulation loop, clearing the temporary variables requires log j�j = O(1) bits. The outer if

statement in the emulation loop consists of jQj cases, where each case (with the exception of that for
Q1 = 1) consists of an inner if statement with O(j�j) cases, each of which consists of a �xed amount of
code. Thus the space requirement for generating this is log(jQj�j�j) = log jQj+log j�j = O(log jM j).
Thus, the total space required for this component is O(log jM j).

{ Each of the copy right and copy left portions of the program consists of j�j + j�j � p(jxj) =
O(j�j � p(jxj)) assignments, where each assignment statement is of �xed size. The cleanup code

at the label Done consists of j�j � p(jxj) assignments, where each assignment statement is of �xed
size. To generate these assignments we need a counter of size log(j�j � p(jxj)) = log j�j + log p(jxj)
bits. Since j�j = O(jM j) and log p(n) = O(logn) for any polynomial p(n), this component requires

O(log jM j+ log jxj) space.

The total space required is therefore O(log jxj + log jM j). Since log jxj � log(jM j + jxj) and log jM j �
log(jM j+ jxj), we have O(log jxj+ log jM j) = O(log(jM j+ jxj)). The lemma follows.

Theorem 3.5 The (binary) simultaneous value problem for programs in Base is PSPACE-complete.

Proof: (sketch) PSPACE-hardness follows directly from Lemmas 3.3 and 3.4.

To show that the simultaneous value problem is in PSPACE, we show that a given such a problem for
a program P , we can construct a nondeterministic multi-tape polynomial-space-bounded Turing machine
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MP to solve the problem. Given a program P , the input to MP consists of the control 
ow graph GP

of P , an initial assignment Einit of values for the variables of P , a target program point nt, and a target
environment Et for the variables of P : Et = fx0 7! c0; x1 7! c1; : : : ; xn 7! cng speci�es the simultaneous

value problem x0 = c0^x1 = c1^ : : :^xn = cn. We wantM to halt i� there is a path from the initial node

of GP to nt that transforms Einit to the target environment Et. MP copies GP and Et to two work tapes
and maintains another work tape Tenv that contains a list of (variable, value) pairs, one for each program

variable. Tenv is initialized from the initial assignment Einit . MP then starts simulating the execution of

P by traversing GP At each vertex of the control 
ow graph, it simulates the e�ects of assignments and
updates Tenv appropriately. At branch nodes MP nondeterministically chooses a successor to continue

processing. Whenever MP reaches the target node nt it checks whether the variable values on Tenv match

the desired environment Et, and halts if this is the case. It is clear that if there is an execution path in
P such that, starting from the initial variable assignment Einit , execution can reach the point nt with the

desired values Et for the variables, then M can guess this path and will eventually halt and accept its
input. Conversely, if MP halts and accepts, there must have been such a path.

The space needs for MP are bounded by the space required to store the GP and Einit and the space

required for the tape Tenv . The space required for GP and Einit is O(n), where n is the size of the input
program. Under the assumption that the we have a �xed number of constants to deal with (i.e., that the

analysis is being carried out over a �xed �nite domain), we need O(1) bits for the value of a variable at
any program point; there can be at most O(n) variables in P , so the space requirements for Tenv are O(n).

It follows that M is polynomial-space-bounded.

In the context of program analysis, this is representative of the simplest kind of simultaneous value

problem, where we have two distinct properties (here represented by \equal to 0" and \equal to 1") of a

language with a minimally interesting set of control constructs. The (hardness) result therefore extends
directly to more complex analysis problems. Unlike the PSPACE-hardness result given by Jones and

Muchnick for relational attributes analyses [6], our result does not require interpreted conditionals. In

other words, our result complies with the standard assumption of data
ow analysis, namely, that all paths
in a program are executable. As such, it is applicable to a wider variety of data
ow analyses.

3.2 Inter-procedural Analysis of Non-recursive Programs

Suppose we extend the language Base with procedures where parameters are passed by value: let the
resulting language be Base+Proc. For non-recursive programs in this language, the complexity of simul-

taneous value problems does not change:

Theorem 3.6 Inter-procedural simultaneous values problems for non-recursive programs in Base+Proc

is PSPACE-complete.

Proof: PSPACE-hardness follows from Theorem 3.5. To see that the problem remains in PSPACE,

consider a non-recursive program containing k procedures. The runtime call stack of this program can

have depth at most k. We use a nondeterministic Turing machine similar to that used to show membership
in PSPACE in the proof of Theorem 3.5, except that it uses a tape that is k times longer than before. This

tape is used as a stack: at a procedure call, it \pushes" a frame by copying the values of the arguments

after the \current frame" at the end of the tape; and on a return from a procedure, it \pops" the current
frame by erasing the appropriate tape cells and moves to the next frame. The space requirement of this

machine is still polynomial in the length of the input, whence it follows that the analysis is in PSPACE.

3.3 Applications to the Complexity of Data
ow Analyses

This section discusses applications of the results of the previous section to various program analyses dis-

cussed in the literature.
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3.3.1 Intra-procedural Pointer Alias Analysis

We �rst add single-level pointers to the Base language, yielding the language Base+1ptr. This language
contains two classes of variables: base variables, which range over integers, and pointers to base variables,

which range over addresses (which are assumed to be disjoint from the set of integers). The new operations
in this language, compared to Base, are: taking the address of a (base) variable v, denoted by &v, and

dereferencing a pointer p, denoted by *p.

It is not hard to see that the simultaneous value problem in this case is still in PSPACE, since we can
construct a polynomial-space-bounded Turing machine to solve this problem in a manner similar to that

in the proof of Theorem 3.5. By contrast to the language Base, where the single value problem is in P, the
complexity of the single value problem for Base+1ptr depends on whether we are concerned with base

variables or pointers. For a single-value problem for a base variable, an independent attribute analysis is

not suÆcient. This is illustrated by the following program fragment:

a = 0;

if ( - ) { p = &a; x = 0; } else { p = &b; x = 1; }

*p = x;

Suppose we are interested in the single-value problem of whether a = 1 may hold immediately after the

assignment *p = x. An independent attributes analysis would infer that immediately after the conditional,

p can point to either a or b, and therefore that after the assignment `*p = x' the value of a may or may not
be 1. A relational attributes analysis, on the other hand, would be able to infer that the value of a cannot

be 1 after the indirect assignment. In other words, for a precise analysis we need relational attributes, i.e.,
the ability to solve simultaneous value problems.

Theorem 3.7 The single-value problem for pointer variables in Base+1ptr can be solved in polynomial

time. The single-value problem for base variables in Base+1ptr is PSPACE-complete.

Proof: For a single-value problem for a pointer variable, the analysis need concern itself only with assign-
ments to pointer variables, and a straightforward independent attributes analysis is suÆcient. Reasoning

as for Theorem 3.1 shows that this is solvable in polynomial time.

To prove PSPACE-hardness, we show how a binary simultaneous value problem in Base can be reduced

to a single-value problem for base variables in Base+1ptr . Given a program P in Base the idea is to

generate a program P 0 as follows (here, X1; X2; : : : denote variables in P while X1; X2; : : : denote variables
in P 0). The program P 0 contains two variables, Zero and One, that are initialized to the constants 0 and

1 respectively. For each variable X in P we have two variables X and X in P 0. Assignments in P are

translated into P 0 as follows:

{ An assignment `X = 0' in P is translated to a pair of assignments `X = &Zero; X = &One' in P 0;
an assignment `X = 1' is translated to `X = &One; X = &Zero.'

{ An assignment `X = Y in P is translated to a pair of assignments `X = Y; X = Y.'

The intuition is that X tells us what the value of the original variable X is, while X tells us what it is not.

Other constructs, such as conditionals and control transfers, remain unchanged in the translation.

Suppose we are given a binary simultaneous value problem in of the form X1 = c1 ^ � � � ^Xn = cn at a

point p in the original program P , where ci 2 f0; 1g. Consider the conjunct X1 = c1: if c1 � 0 then, in the
generated program program, we want to test whether X1 points to Zero. If c1 � 1, we want to test whether

X1 points to One; or equivalently, whether X1 does not point to Zero (since the variables One and Zero are

the only base variables in the program, and hence the only things that X1 could point to); or equivalently,
whether X1 points to Zero. Let p0 be the program point in P 0 that corresponds to the point p in P , and

9



let u; v denote that u points to v. We want to determine whether there is an execution path in P 0 upto

p0 such that x1 ; Zero^ � � � ^xn ; Zero, where xi is Xi if ci � 0, and Xi if ci � 1. We do this by inserting
the following code fragment at the point p0 (where xi is either Xi or Xi , depending on whether ci is 0 or

not, as just described).

if ( - ) f
*x1 = 0; ...; *xn = 0;

L: goto End; /* go to end of program and halt */

g

If, for some execution path leading to p0 in the program P 0, xi ; Zero for each xi, then all of the
assignments *xi = 0 will write to the variable Zero. This means that the initial assignment of 1 to the

variable One will not be overwritten (since there are no other assignments to either Zero or One, or any

indirect assignments through any of the variables Xi or Xi, elsewhere in the program), so One will have
the value 1 at the point labelled L in the code fragment above. On the other hand, if for every execution

path leading to p0 we have xj 6; Zero for some j, it must be the case that xj ; One, which means that
the assignment *xj = 0 will overwrite the initial assignment to One. Thus, by answering the single-value

problem of whether or not One has the value 1 at the point L, we can solve the original binary simultaneous

value problem for the program P . The result follows from Theorem 3.7.

As an example application of this, the following result is immediate:

Corollary 3.8 Precise intra-procedural constant propagation in Base+1ptr is PSPACE-complete.

Next, we consider multi-level pointers. The simplest case involving multi-level pointers is when we have
two-level pointers, i.e., pointers to pointers. In this case we have three classes of variables: base variables;

pointers to base variables, or 1-pointers; and pointers to 1-pointers (i.e., pointers to pointers to base

variables), or 2-pointers. We call this language Base+2ptr.

The role of 2-pointers with respect to 1-pointers in the language Base+2ptr is exactly analogous to

that of pointers to base variables in the language Base+1ptr. In particular, to determine the possible
aliases of 1-pointers, we need to determine the values that can be assigned to them through 2-pointers. By

direct analogy with Theorem 3.7, therefore, we have the following result:

Theorem 3.9 The single-value problem for 2-pointers in Base+2ptr is solvable in polynomial time. The

single-value problem for 1-pointers in Base+2ptr is PSPACE-complete.

Landi's dissertation shows that intra-procedural pointer alias analysis is PSPACE-complete if at least four

levels of indirection are permitted [8]; his proof can be adapted to require only two levels of indirection

[10]. Landi's conclusion is that the diÆculty with pointer alias analysis is caused by multiple levels of
indirection. This is obviously a valid conclusion, but does not get to the heart of the matter: what is the

fundamental di�erence between single-level and multi-level pointers that causes the analysis of multi-level

pointers to become so diÆcult? The answer, as we have shown above, is that alias analysis in the presence
of at most one level of indirection can be carried out using an independent attributes analysis, while the

presence of even two levels of indirection requires a relational attributes analysis.

A similar line of reasoning can be used to derive a recent result by Chatterjee et al. [4], namely, that

intra-procedural concrete type inference for Java programs with single-level types and exceptions without

subtyping, and without dynamic dispatch, is PSPACE-hard.

3.3.2 Intra-procedural Reaching De�nitions with Single-Level Pointers

Consider the problem of computing intra-procedural reaching de�nitions in the language Base+1ptr, i.e.,
in the presence of single-level pointers. The following example illustrates that an independent attributes
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analysis is not enough for a precise solution to this problem, and that a relational attributes analysis is
necessary:

int a, b, *p, *q;

...

D: a = 0;

if ( - ) { p = &a; q = &b; } else { q = &a; p = &b; }

*p = 1;

*q = 1;

L:

We want to know whether the de�nition labelled D can reach the program point labelled L. An indepen-

dent attributes analysis would infer that p can point to either a or b after the conditional, and therefore
that the assignment *p = 1 might not kill the de�nition D. A similar reasoning would apply to q and the

indirect assignment *q = 1. Such an analysis would therefore conclude that de�nition D could reach L. A

relational attributes analysis, by contrast, would determine that one of p or q would point to a, so that
one of the assignments *p = 1 or *q = 1 would de�nitely kill the de�nition D|i.e., de�nition D does not

reach L. Thus, the independent attributes analysis is not precise, and a relational attributes analysis is

necessary. The following theorem discusses the complexity of precise analyses; its proof uses a reduction
very similar to that for Theorem 3.7.

Theorem 3.10 The determination of precise solutions for the following intra-procedural analysis problems

for base variables in programs in Base+1ptr is PSPACE-complete: (a) reaching de�nitions; (b) live

variables; and (c) available expressions.

Proof: The proof of PSPACE-hardness uses a translation from the simultaneous value problem in Base

that is identical to that used in the proof of Theorem 3.7. Let p0 be the program point in P 0 that corresponds
to the point p in P , and let u; v denote that u points to v. We inser the following code fragment at the

point p0 (where xi is either Xi or Xi , depending on whether ci is 0 or not, as in the proof of Theorem 3.7).

if ( - ) f
*x1 = 0; ...; *xn = 0;

L: goto End; /* go to end of program and halt */

g

If, for some execution path leading to p0 in the program P 0, xi ; Zero for each xi, then all of the

assignments *xi = 0 will write to the variable Zero, which means that the initial assignment of 1 to the
variable One will reach the point labelled L in the code fragment above (since there are no other assignments

to either Zero or One, or any indirect assignments through any of the variables Xi or Xi, elsewhere in the
program). On the other hand, if for every execution path leading to p0 we have xj 6; Zero for some j, it

must be the case that xj ; One, which means that the assignment *xj = 0 will kill the initial assignment

to One. Thus, by answering the question of whether the initial assignment to the variable One can reach
the point labelled L in the program P 0, we can solve the original binary simultaneous value problem for

the program P . The result follows from Theorem 3.7.

Similar arguments can be used to establish PSPACE-completeness for liveness analysis and available

expressions.

Theorem 3.10 improves on a result due to Pande, Landi and Ryder, who show that the problem of
computing inter-procedural def-use chains in the presence of single-level pointers is NP-hard [15].

4 Inter-procedural Analysis of Recursive Programs

To study the complexity of inter-procedural analyses in the presence of recursion, we add a very limited

enhancement to the control 
ow constructs of the language Base+Proc (i.e., the base language together
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with procedures). Each program now has a distinguished global variable NoErr whose value is initially 1.

We add a statement Error-if-Zero(�) that behaves as follows: when Error-if-Zero(x) is executed, NoErr
is set to 0 if x has the value 0, otherwise it is not modi�ed. In a general programming context, such a

construct could be used to determine, for example, whether system calls such as malloc() have executed

without errors during execution; in the context of this paper we use it in a much more limited way, though
with a very similar overall goal, namely, to determine whether anything \goes wrong" in an execution path.

We refer to the language obtained by adding this facility to Base+Proc as Base+Proc+Err.

We show that the single-value problem for arbitrary programs in Base+Proc+Err is complete for

deterministic exponential time. Our proof relies on a result of Chandra et al. [3], who show that APSPACE

= EXPTIME, where APSPACE is the class of languages accepted by polynomial-space-bounded alternating
Turing machines, and EXPTIME = [c�0DTIME[2n

c

].

De�nition 4.1 An (single-tape) alternating Turing machine M is a 6-tuple (Q;�;�; Æ; q0; �), where Q is

a �nite set of states; � is the input alphabet; � is the tape alphabet; Æ : Q��! P(Q� ��fL;Rg) is the
transition function; q0 2 Q is the initial state; and � : Q ! faccept; reject;8; 9g is a labelling function on

states.3

To simplify the discussion that follows, we additionally assume that a state q that is existential (i.e.,

�(q) = 9) or universal (i.e., �(q) = 8) has exactly two successor states for any given tape symbol; it is not
hard to see how any ATM can be transformed to satisfy this restriction: if a state q has a single successor

for some tape symbol we add a second successor that is either an accepting state if q is universal, or a

rejecting state if q is existential; if q has more than 2 successors for some tape symbol, we use a \binary
tree of transitions" instead. As before, we assume that the tape \wraps around," so that the cell being

scanned is always cell 0. Thus, a con�guration of an ATM is of the form qx where q is a state and x the
tape contents.

The notion of acceptance for alternating Turing machines is a generalization of that for ordinary non-
deterministic Turing machines: the main di�erence is that each successor of a universal state is required to

lead to acceptance. To de�ne this more formally, we use the notion of computation trees due to Ladner et

al. [7]. A computation tree for an ATM M is a �nite, nonempty labelled tree with the following properties:
each node of the tree is labelled with a con�guration of M ; if p is an internal node of a tree with label

qu and q is an existential state, then p has exactly one child labelled q0u0 such that qu ` q0u0; and if p

is an internal node of a tree with label qu and q is a universal state with successors q0 and q00, such that
qu ` q0u0 and qu ` q00u00, then p has two children labelled q0u0 and q00u00. An accepting computation tree is

one where all the leaf nodes are accepting con�gurations, i.e., of the form qu where q is an accepting state.

An ATM M with start state q0 accepts an input x if it has an accepting computation tree whose root is
labelled q0x.

Let M be a p(n)-space-bounded ATM with tape alphabet �, where p(n) is some polynomial, and let
x be an input for M . Let nt = p(jxj) � 1 and ns = j�j � 1. The program PM;x in Base+Proc+Err

that simulates the behavior of M on input x behaves as sketched below. There is a function fq() for

each state q of M . Each such function has a tuple of parameters T0;0 , . . . , Tnt;ns that represents the
contents of M 's tape in a way that is conceptually similar to the construction described in Section 3.1,

the main di�erence being that these variable are now locals rather than globals. State transitions in M

are simulated by function calls in PM;x: moves to the successors of an existential state are simulated using

an if-then construct, while moves to the successors of a universal state are simulated by a sequence of

function calls.

Let M = (Q;�;�; Æ; q0; �) be a p(n)-space-bounded ATM, where p(n) is some polynomial, and let x be

an input for M . Let nt = p(jxj)� 1 and ns = j�j � 1. We generate a program PM;x in Base+Proc+Err

3There is a more general formulation of alternating Turing machines where states can also be labelled as \negating" states,
which are labelled by :. However, this adds nothing to their power (Theorem 2.5 of Chandra et al. [3]), so for simplicity we
restrict ourselves to alternating Turing machines without negating states.
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as discussed below. The code necessary to simulate M 's actions when it makes a transition from state qi
to state qk upon scanning a tape cell containing symbol sj is represented by TRANSITION(qi; sj ; qk) and
is de�ned as follows:

Æ(qi; sj) = (qk; sm; L) Æ(qi; sj) = (qk; sm;R) Explanation

T0;0 = X0;0; T0;0 = X0;0; restore tape

... ...

Tnt;ns = Xnt;ns; Tnt;ns = Xnt;ns; restore tape

Error-if-Zero(T0;j) ; Error-if-Zero(T0;j) ; verify scanned symbol

T0;j = 0; T0;j = 0; update tape

T0;m = 1; T0;m = 1; update tape

COPY LEFT; COPY RIGHT; rotate tape

fqk (T0;0; : : : ; Tnt;ns); fqk (T0;0; : : : ; Tnt;ns); move to state qk

Here, COPY LEFT and COPY RIGHT correspond to the code fragments labelled copy left and

copy right respectively in Figure 1, their purpose being to rotate the tape appropriately to simulate
the movement of the tape head.

Corresponding to each state q 2 Q there is a function fq in PM;x that is de�ned as follows:

1. qi is an accepting state. The function fqi is de�ned as

fqi( T0;0 , ..., Tnt;ns ) f /* do nothing */ g

2. qi is a rejecting state. The function fqi is de�ned as

fqi( T0;0 , ..., Tnt;ns ) f Error-if-Zero(0) ; g

3. qi is a universal state. Let the successors of qi on tape symbol sj be qj0 and qj00 (recall our assumption
that qi has exactly two successors on any given tape symbol). The function fqi is de�ned as

fqi( T0;0 , ..., Tnt;ns )

f
local X0;0 = T0;0, ..., Xnt;ns = Tnt;ns;

if ( - ) f TRANSITION(qi; sj ; q
0

j); TRANSITION(qi; sj ; q
00

j ); g /* moves on sj */

...

else f TRANSITION(qi; sk; q
0

k); TRANSITION(qi; sk; q
00

k ); g /* moves on sk */

g

4. qi is an existential state. Let the successors of qi on tape symbol sj be qj0 and qj00 . The function fqi
is de�ned as

fqi( T0;0 , ..., Tnt;ns )

f
local X0;0 = T0;0, ..., Xnt;ns = Tnt;ns;

if ( - ) f /* moves on sj */

if ( - ) f TRANSITION(qi; sj ; s
0

j) g; else f TRANSITION(qi; sj ; q
00

j ) g;
g
...

else if ( - ) f /* moves on sk */

if ( - ) f TRANSITION(qi; sk; q
0

k) g; else f TRANSITION(qi; sk; q
00

k ) g;
g

g

The entry point of the program PM;x is the function main(), de�ned as
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main()

f
Start:

local T0;0 , ..., Tnt;ns ;

INIT TAPE; /* initialize Ti;j based on M's input x */

fq0(T0;0; : : : ; Tnt;ns);

End:

g

The crucial point in the construction is that the Error-if-Zero(�) construct is used to keep track
of whether anything \goes wrong" along an execution path: it sets the global variable NoErr, which is

initialized to 1 when execution starts, to 0 along an execution path if either (i) the execution path does

not correspond to a computation of M , because PM;x guesses incorrectly on the tape cell being scanned by
M ; or (ii) because the path encounters a rejecting state of M . Once NoErr has been set to 0 the structure

of the program ensures that it cannot be reset to 1. Thus, at the end of the execution path, the value of

NoErr can be used to determine whether that path corresponds to a valid accepting computation of M .

The dynamic analog of the call (multi-)graph of PM;x is the valid call tree, which is a �nite tree where

each vertex is labelled with a procedure name and a tuple of arguments. A vertex (f; �u) in such a tree
has children (f1; �u1); : : : ; (fk; �uk) if there is an execution path in PM;x, starting with the call f(�u) with the

value of NoErr = 1, that executes the procedure calls f1(�u1); : : : ; fk(�uk) in f 's body and returns with the

value of NoErr still at 1 (the conditions on the value of NoErr ensure that nothing has gone wrong along
the corresponding execution path). The following results establish the connection between the behaviors

of the alternating Turing machine M and the program PM;x. Here, Ti;j � u denotes that the values of the

tuple of variables (T0;0; : : : ; Tnt;ns) in PM;x correctly re
ect the tape contents u in M .

Theorem 4.1 PM;x has a valid call tree with root (fq; Ti;j) if and only if M has an accepting computation

tree with root qu, where Ti;j � u.

Proof: We �rst show that PM;x has a valid call tree TP with root (fq; Ti;j) if M has an accepting

computation tree TM with root qu, where Ti;j � u. We proceed by induction on the height of TM .

The base case is for n = 0, which means that q is an accepting state. Suppose that the root of TM is

labelled qu. From the construction of PM;x, it follows that the tree consisting of the single node (fq ; Ti;j),
where Ti;j � u, is a valid call tree.

For the inductive case, assume that PM;x has a valid call tree with root (fq0 ; �v0) whenever M has

an accepting computation tree with root q0u0 and height � k, where �v0 � u0, and consider an accepting
computation tree TM of M with height k + 1. Let the root of TM be qu, and suppose that Ti;j � u. We

have two possibilities:

1. q is an existential state. From the de�nition of computation trees, TM 's root has a single child q0u0,
and the subtree T 0

M rooted at this child is also an accepting computation tree of M . Since T 0
M has

height less than k + 1, it follows from the induction hypothesis that PM;x has a valid call tree T 0
P

whose root is labelled (fq0 ; �v0) such that �v0 � u0.

Suppose that the transition from q to q0 occurs on tape symbol si. From the construction of PM;x,

the function fq contains an execution path through the code de�ned by TRANSITION(q; si; q
0) that

veri�es that the tape symbol scanned is si, adjusts the variables Ti;j as necessary to correspond to
the tape contents u0, and calls fq0 . It follows from this that a tree with root (fq; Ti;j) that has a

single subtree T 0
P is a valid call tree for PM;x.

2. q is a universal state. This means that TM 's root has two children q0u0 and q00u00, and that the

subtrees T 0
M and T 00

M rooted at each of these children are accepting computation trees for M . Since
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each of these subtrees has height less than k + 1, it follows from the induction hypothesis that PM;x

has valid call trees T 0
P , with root labelled (fq0 ; �v0), and T 00

P , with root labelled (fq00 ; �v00), where �v0 � u0

and �v00 � u00.

Suppose that the transitions from q to q0 and q00 occur on tape symbol si. From the construction of
PM;x, the function fq contains an execution path

if ( - ) f TRANSITION(q; si; q
0); TRANSITION(q; si; q

00); g

that simulates each of these transitions by verifying that the tape symbol scanned is si, adjusting the

variables Ti;j as necessary, and calling the appropriate function in PM;x. It follows that a tree with
root (fq ; Ti;j) that has two subtrees T

0
P and T 00

P is a valid call tree for PM;x.

The proof in the other direction is very similar, except that the induction is on the height of the valid call
trees of PM;x.

Corollary 4.2 M accepts x if and only if there is an execution path p in PM;x from the program point

labelled Start to that labelled End such NoErr = 1 at the end of p.

Proof: We observe that by construction of PM;x, the code at the point labelled Start sets NoErr to 1
and initializes the variables Ti;j according to the input x.

Suppose that M accepts x, i.e., there is an accepting computation tree TM rooted at q0x. It follows

from Theorem 4.1 that there is a valid call tree TP for PM;x with root (fq0 ; Ti;j) where Ti;j � x. This
means that there is an execution path in PM;x from Start to End such that NoErr = 1 at End.

Suppose that M does not accept x, i.e., there is no accepting computation tree TM rooted at q0x. From
Theorem 4.1, it follows that there is no valid call tree in PM;x with root (fq0 ; Ti;j) such that Ti;j � x. It

follows that there is no execution path from Start to End along which the value of NoErr remains 1.

It is easy to show, moreover, that PM;x can be generated using O(log jM j+log jxj) space. The following
result is then immediate:

Corollary 4.3 The inter-procedural single-value problem for Base+Proc+Err is EXPTIME-hard.

It is interesting and instructive to compare this result with Theorem 3.5. For the intra-procedural case con-

sidered in Theorem 3.5, we can use ordinary assignments to program variables to keep track of whether or
not an execution path in the program corresponds to a valid accepting computation of the Turing machine

being simulated. We don't know whether the same technique works in the case of inter-procedural analysis
of recursive programs: speci�cally, when simulating an alternating Turing machine, the handling of univer-

sal states seems problematic. Instead, we use a language mechanism|the Error-if-Zero(�) construct|that

allows us to accumulate a highly constrained summary of an execution path into a variable. This allows
us to determine, from the value of this variable, whether or not anything went wrong at any point in an

execution path. Notice that even though Corollary 4.3 gives a complexity result for single-value problems

in Base+Proc+Err, the availability of the Error-if-Zero(�) construct in fact allows us to incrementally
accumulate (in a limited way) the values of a number of variables along an execution path. In fact, while the

(intra-procedural) single-value problem for Base is solvable in polynomial time (Theorem 3.1), adding the
Error-if-Zero(�) construct makes it PSPACE-hard; this can be used to simplify the proof of the 1-pointer

case in Theorem 3.9.

4.1 Applications to the Complexity of Inter-procedural Data
ow Analysis

4.1.1 Inter-procedural Pointer Alias Analyses

The following theorem gives the complexity of single-value problems for arbitrary programs in

Base+Proc+1ptr. The proof relies on using an indirect assignment through a pointer to set a global
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variable to 0 if anything \goes wrong" along an execution path, and thereby simulate the Error-if-Zero(�)
construct.

Theorem 4.4 The inter-procedural single-value problem for base variables in Base+Proc+1ptr is

EXPTIME-complete.

Proof: The proof is by reduction from the inter-procedural single-value problem for Base+Proc+Err .

We show how any program PM;x in Base+Proc+Err , generated for an ATMM and input x as discussed
in Section 4, can be translated to a program P 0 in Base+1ptr (here, X1; X2; : : : denote variables in P

while X1; X2; : : : denote variables in P 0):

1. P 0 contains global variables Zero and One, which are initialized to 0 and 1 respectively. Additionally,

for each global variable V in P there is a global pointer variable V in P 0; in particular, the distinguished

(base) variable NoErr in P corresponds to a global pointer variable NoErr in P 0, which is initialized
to the value &One.

2. For each n-argument function f in P there is an n-argument function f in P 0. For each such pair of
corresponding functions, for each local variable V in f there is a local pointer variable V in f.

3. Assignment statements in P are translated as follows: a statement `X = e' in P translates to the
statement `X = e0', where e0 is given by

e0 =

8<
:

&Zero if e � 0

&One if e � 1
Y if e � Y for some variable Y

Function calls are translated as follows: a call `f(e1; : : : ; en)' translates to `f(e01; : : : ; e
0
n)', where the

e0i are given by:

e0i =

8<
:

&Zero if ei � 0
&One if ei � 1

Y if ei � Y for some variable Y

Conditionals are translated unchanged.

4. A statement Error-if-Zero(X) is translated to `*NoErr = *X.'

5. The single-value problem `NoErr = 0' in P corresponds to the base-variable single-value problem
`One = 1' in P 0.

Each variable V in P is translated to a pointer variable V in P 0; a value of 0 for V in P corresponds to V

being a pointer to the base variable Zero in P 0, while a value of 1 for V corresponds V being a pointer to

the variable One.

Consider the program PM;x generated for a given ATM M and input x. In the corresponding program

P 0
M;x in Base+1ptr , the variable NoErr is initially set to point to One, which has the value 1. Now

consider any execution path p in P . If p does not contain any occurrence of a Error-if-Zero(�) statement,
the execution along the corresponding path in P 0 simply parallels that in P , the only di�erence being

that instead of the values 0 and 1 in P we have &Zero and &One in P 0. If the path p contains a state-

ment Error-if-Zero(X) , then the corresponding statement in P 0 is `*NoErr = *X.' We have the following
possibilities:

1. NoErr points to One, X points to One, and the value of One is 1 (corresponding to the variables NoErr
and X in P both having the value 1). In this case this assignment to *NoErr has no e�ect on the

value of any variable in P 0. This parallels the behavior of P .

16



2. NoErr points to One and X points to Zero (corresponding to X having the value 0 in P ). In this case

the assignment sets the variable One to have the value 0. This again parallels the behavior of P .

3. NoErr points to One, but the value of One is 0 (due to an assigment corresponding to the previous
case earlier in the execution). In this case, regardless of whether X points to One or to Zero, the

value of *X is 0, so the assignment `*NoErr = *X' does not change the value of any variable in P 0. In

particular this means that *NoErr remains 0. Again, this parallels the behavior of P .

Thus, at the end of the execution of P 0, the variable One has the value 1 if and only if, at the end of the
corresponding execution path in P , the value of NoErr is 1. The reduction described above establishes

that the inter-procedural single-value problem for base variables in Base+1ptr is EXPTIME-hard.

We next show how a program P in Base+Proc+1ptr can be simulated by a p(n)-space-bounded ATM

MP , where n is the program size. MP has its tape divided into four regions: Globals, AnticipatedGlobals,

TempGlobals, and Locals. Globals contains the current snapshot of the global variables. AnticipatedGlobals
shows the Globals as we expect them to be upon return from the current subroutine. TempGlobals is an

auxiliary region big enough to hold Globals and AnticipatedGlobals. Locals contains the contents of local
variables and subroutine arguments; the scope of these variables extends only to the end of the current

subroutine (parameter passing and returning of results can be achieved using global variables). These

regions are obviously polynomially bounded by the size of P.

MP works as follows: It interprets the current subroutine f in P , updating Globals and Locals appro-

priately. When P is nondeterministic because of uninterpreted conditionals so is MP , which \guesses" one
of the branches of the conditional to continue interpreting (using existential states). When f returns MP

compares Globals with AnticipatedGlobals and goes into an accepting state if they are equal and otherwise

into a rejecting state.

The key mechanism is how calls to a subroutine g are simulated. FirstMP copies the AnticipatedGlobals

into TempGlobals MP then guesses the e�ect of the subroutine call on Globals and writes this guess into
AnticipatedGlobals. Immediately after this MP switches into a universal state. One successor of this

state starts interpreting subroutine g. This computation branch will reach an accepting state only if

AnticipatedGlobals was guessed correctly. The other successor continues interpreting subroutine f assuming
the call to g behaves as expected, i.e., it copies AnticipatedGlobals to Globals and TempGlobals back to

AnticipatedGlobals.

The subroutine main(), where the simulation begins is handled slightly di�erently. At the beginning

of main() Globals is initialized and upon return from main MP always enters an accepting state.

It is not hard to see that this will faithfully simulate P. If we interested in solving a single or simultaneous

value problem|which we assume, without loss of generality, to be posed at the end of main|we can make

MP test the condition at the end of main and either go into an accepting state if the condition is satis�ed
or in a rejecting state otherwise.

Corollary 4.5 The complexity of precise inter-procedural pointer alias analysis in the presence of 2-level

pointers is EXPTIME-complete.

Corollary 4.6 The determination of precise solutions for the following inter-procedural analysis problems

for base variables in Base+Proc+1ptr is EXPTIME-complete: (a) reaching de�nitions; (b) live vari-

ables; and (c) available expressions.

4.1.2 Inter-procedural Analysis of Procedures with Reference Formals

Consider extending the language Base along another direction: instead of allowing explicit pointers, as in
Section 3.3.1, we allow (non-recursive) functions with reference formal parameters. It does not come as a
surprise that an independent attributes analysis is inadequate for solving the single value problem in this
case. To see this, consider the following program:
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var a, b, x: integer;

main()

{

a = 0;

if (...) { x = 0; q(a,x); }

else { x = 1; q(b,x); }

}

proc q(u: ref integer; v: integer)

{

u = v;

}

We want to know whether or not a = 1 can hold immediately after the conditional in main(). We need

a relational attributes analysis of q's arguments in order to determine that q's �rst argument, u, cannot

be a reference to a if its second argument v has the value 1. Thus, an independent attributes analysis is
inadequate for this single value problem. The following result shows that (non-recursive) procedures with

reference parameters can be used to solve arbitrary simultaneous-value problems for Base.

Theorem 4.7 The single value problem for Base extended with procedures with reference parameters is

PSPACE-complete for non-recursive programs and EXPTIME-complete for arbitrary programs.

Proof: (sketch) The proof is very similar to that for Theorem 4.4, the primary di�erence being that

instead of explicit pointer variables we use reference parameters. Each procedure in the program takes

two additional arguments that are references to the global variables Zero and One. Instead of explicit
assignments of &Zero and &One, as in the construction in the proof of Theorem 4.4, we use these reference

parameters. The remainder of the proof remains essentially unchanged.

Corollary 4.8 Precise inter-procedural liveness analysis and available expressions analysis for Base ex-

tended with procedures with reference parameters are both PSPACE-complete for non-recursive programs,

and EXPTIME-complete for arbitrary programs.

Proof: The proof follows the lines of that of Theorem 4.7, modi�ed in a manner analogous to that in

Theorem 3.10.

This result corrects a minor 
aw in Myers' original proof of the diÆculty of such analysis problems

[13]. Myers considered inter-procedural analyses in the presence of reference parameters, and claimed to
show NP-completeness for liveness analysis and co-NP-completeness for available expressions; in fact, he

proved only hardness results. Our results establish that membership in NP holds for acyclic non-recursive

programs (Theorem 3.2), but stronger results can be given for general programs.

4.1.3 Inter-procedural Control Flow Analysis of Programs with Function Pointers

In this section we consider extending Base in another direction, by adding C-style function pointers.
These di�er from general-purpose pointers in that (i) the objects pointed at are functions, rather than

data; and (ii) the object obtained by dereferencing a function pointer cannot be modi�ed by the program.
The primary purpose of function pointers, therefore, is to a�ect control 
ow. The corresponding analysis

problem is therefore a control 
ow analysis problem. The following result, whose proof follows the lines of

those for Theorem 3.9 and Corollary 4.5, improves on an NP-hardness result by Zhang and Ryder [17]:

Theorem 4.9 Precise control 
ow analysis in the presence of function pointers is PSPACE-complete for

non-recursive programs and EXPTIME-complete for arbitrary programs.

5 Summary and Related Work

The contributions of this paper can be summarized as follows:

1. New Results : To the best of our knowledge, the following are are new results: Corollary 3.8, Theorem

3.10(b,c), Corollary 4.5, and Corollary 4.6.
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2. Improvements to Existing Results : Theorem 3.10 and Corollary 4.6 improve on a result by Pande

et al. [15]. Corollary 4.5 improves on a result by Landi [8, 11]. Theorem 4.7 and Corollary 4.8 improve
on a result by Myers [13].

3. Explanations of Existing Results : Theorems 3.7 and 3.9 explain the underlying reasons for Landi's
complexity results for pointer alias analysis [8, 11]. Theorems 3.9 and 3.10(a) together explain why

single-level pointers are hard to deal with when constructing intra-procedural def-use chains but not

when considering intra-procedural pointer analyses. Theorem 4.9 explains the diÆculty of inter-
procedural control 
ow analysis in the presence of function pointers.

The distinction between independent attributes analyses and relational attributes analyses was �rst de�ned

by Jones and Muchnick [6], who also examined the complexity of these approaches to program analysis.

They showed that independent attributes analyses over a �xed �nite domain has worst case complexity
that is polynomial in the size of the program, while relational attributes analysis for programs consisting

of assignments, sequencing, and \uninterpreted" conditionals|i.e., where we always assume that either
branch of a conditional may be taken, or, equivalently, that all paths in the program are executable|but

not containing any loops, is NP-hard [6]. Variations on the basic idea of this proof have been used for

NP-hardness results by a number of authors [8, 11, 12, 13, 15], as well as in the proof of Theorem 3.2 in
this paper. Jones and Muchnick also show that when loops and \interpreted" conditionals are added, the

problem becomes PSPACE-hard. Unfortunately, since most data
ow analyses in practice treat conditionals

as uninterpreted, the latter result is not directly applicable to them.

Nielson and Nielson consider, in a very general denotational setting, the number of iterations necessary

to compute the least �xpoint of a functional over a �nite lattice, under various assumptions about the
kinds of functions considered [14]. By contrast, our work focuses on the overall computational complexity

for certain kinds of program analyses. While the number of iterations needed to attain a �xpoint is an

important factor in determining the amount of work done by an analysis, it is not the only such factor,
and hence does not give a complete picture of the complexity of an analysis. To see this, observe that if

we restrict our attention to intra-procedural analyses of loop-free programs, the resulting data
ow equa-

tions are not recursive, so a single iteration suÆces to compute the least �xpoint; nevertheless, relational
attributes analyses for such programs are NP-complete (Theorem 3.2).

Many researchers have given complexity results for speci�c program analysis problems (see, for example,
[8, 11, 12, 13, 15]). As discussed earlier, these results do not generally provide insights into the underlying

reasons for the eÆciency, or lack thereof, of the analyses.

6 Conclusions

This paper attempts to elucidate the fundamental reasons why precise solutions to certain program analyses

are computationally diÆcult to obtain. We give simple and general results that relate the complexity of

a problem to whether or not it requires a relational attributes analysis. The applicability of this result
is illustrated using a number of analyses discussed in the literature: we are able to derive the complexity

results originally given by the authors, and in several cases even stronger complexity results, as direct

corollaries to the results presented here, with little conceptual and notational e�ort.
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