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Abstract

This paper studies two problems that arise in optimization of sensor networks: First,
we devise provable approximation schemes for locating a base station and constructing
a network among a set of sensors each of which has a data stream to get to the base
station. Subject to power constraints at the sensors, our goal is to locate the base
station and establish a network in order to maximize the lifespan of the network.

Second, we study optimal sensor placement problems for quality coverage of given
domains cluttered with obstacles. Using line-of-site sensors, the goal is to minimize
the number of sensors required in order to have each point “well covered” according to
precise criteria (e.g., that each point is seen by two sensors that form at least angle a,
or that each point is seen by three sensors that form a triangle containing the point).

1 Introduction

Consider a wireless sensor network with a large number of deployed sensors, each capturing
data on a continuous basis. The sensors may be capturing video data, audio data, environ-
mental data, etc. There is a base station that collects all of the data streams from all of
the sensors. Each sensor passes data packets along some route in a network, from sensor to
sensor, so that all data arrives at the base station. Since each sensor is generally powered
by some form of battery, the duration of the sensor node is determined in large part by its
power dissipation rate and energy provision. A fundamental issue associated with wireless
sensor networks is maximizing their useful lifetime, given their power constraints. This can
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be significantly affected by the location of the base station as well as the forwarding pro-
tocols used (i.e. which sensor forwards packages of which other sensor) in establishing the
network. Hotfl] (see also [HSP*03]) has suggested the use of the length of time until the
first sensor exhausts its battery as a definition of the lifespan of the system. In the paper,
we show how to find a location of the base station such that the lifespan of the system is
optimized to within any desired approximation bound. Specifically, we give a method for
locating the base station that provably obtains a lifespan of at least (1 —¢) times that of the
optimal lifespan, where € > 0 is any pre-determined fixed value. The algorithm is based on
solving O(ne~*log?(n/¢)) instances of a linear programming problem. It is simple and easy
to implement.

We also study another optimal location problem in sensor networks: How does one choose
locations of sensors for line-of-sight coverage of a given region, under the assumption that
a point is only “covered” if it is “well seen”? We consider two definitions of “well seen”:
A point p is well seen (or robustly covered) if either (a) there are two sensors that see p,
and these sensors are separated by angle at least o with respect to p; or (b) there are three
sensors that see p and they form a triangle that contains p. The objective is to minimize
the number of sensors to achieve robust coverage. Our results on this problem give efficient
approximation algorithms for minimizing the number of sensors.

This second problem is a variant of the classical art gallery problem, in which one is
to place the fewest sensors (“guards”) to see all points of a certain geometric domain. Art
gallery problems have been studied extensively; see, e.g., [Kei00, [O’R87, [She92l, [Urr00] for
surveys. The algorithmic problem of computing a minimum number of guards is known to
be NP-hard, even if the input domain, D, is a simple polygon [OS83|. Thus, efforts have con-
centrated on approximation algorithms for optimal guarding problems. Ghosh |[Gho87] gave
an O(logn)-approximation for computing a minimum number of vertex guards for a polygon;
his method is based on standard set cover results. More recently, researchers [EH02, (GLOT]
have applied the set cover methods of Clarkson [Cla93, [BG95], which exploits finiteness of
VC-dimension. In particular, Efrat and Har-Peled [EH02] obtain an O(log k*)-approximation
algorithm for guarding a polygon with vertex guards, using time O(n(k*)?log*n), where k*
is the optimal number of vertex guards. They also apply their technique to guards that may
lie at any point of a dense grid; the running time then has a factor polylogarithmic in the grid
density. (No approximation algorithm is known if the guards are completely unrestricted
and all of the polygon is to be guarded.) Further, the methods can be applied to polygons
with holes and to 2.5D polyhedral terrains, still with polylogarithmic approximation factors.
Cheong et al. [CEH04] have recently shown how to compute k guards in order to optimize
(approximately) the total area seen by the guards. The triangle-guarding coverage problem
we study is related to recent work of Smith and Evans [SE03], as we discuss in Section [3.2]

!Thomas Hou, personal communication, 2003.



2 Optimal placement of base-station to maximize net-
work lifespan

2.1 Settings

In the following, we consider a wireless sensor s to be a point in the plane that has to
transmit a certain amount of information from the sensor to a base station. For example, a
sensor may consist of a thermostat, camera, or other data-gathering device, together with
a transmitter and receiver and a battery. Each sensor needs to send its data to the base
station. The cost of transmission, in terms of energy drained from the battery, is a function
of the distance over which data is transmitted times the amount of information sent. This
cost is by far the major component that affects the battery life.

A detailed power dissipation model for each component at a wireless sensor node can be
found in [Hei00]. It turns out that, for sensor networks that are sparsely deployed over a
wide geographical area, the power consumption by data communication (i.e., receiver and
transmitter) is the dominant factor among all the power consumption components [ASSC02].
This disparity is illustrated in [PK00], which shows that, under Rayleigh fading and fourth-
power distance loss, the energy cost of transmitting 1 KB a distance of 100 m is approximately
the same as executing three million instructions on a 100 MIPS/W processor.

The power dissipation at a receiver can be modelled as in [Rap01]:

Pr = QT4 , (1)

where 7; (in bps) is the incoming rate of received data bit-stream and the parameter a,. = 135
nJ /b [Hei00].
The power dissipation at the transmitter can be modelled as:

pe(r) = [an + apr®]r, (2)

where p;(r) is the power dissipated in node s; when it is transmitting to node sy, and r
is the Euclidean distance between s; and s,. Here ay; is a distance-independent constant
term, and «4 is a constant term associated with the distance term, where K is the path loss
indexE] with 2 < K < 4 [Rap01], and r, is the output bit rate of the transmitter, which is
the aggregated rate of both local and received data traffic.

The situation becomes considerably more interesting when we have several sensors s1, .. ., s,.
Each sensor s; sends a stream of one unit of information per second to the base station (e.g.,
10KB/s), and each sensor starts with a battery having b; units of energy. Here, we speak
of each sensor having one unit of information to transmit per second; the unit of data is
any particular fixed data size, which could be very large (e.g., several images). (The case in
which sensors have various different amounts of information to transmit is an easy extension
of our discussion; it is deferred to the full version of this paper.) Of course, each sensor can
send all of its information directly to the base station, but it can also forward a portion of
its transmitted information to other sensors, which can then relay it (directly or indirectly)
to the base station.

2The exponent K is closer to 4 for a low-lying antenna and near-ground channels [Rap01]. This can be
attributed to the partial signal cancellation by a ground-reflected ray.



We follow Hou et al. [HSPT03| in optimizing the lifespan T'(b) of the system, defined as
the maximal time at which all nodes remain alive (powered), given that the base station is
position at a point b. Note that we assume that every sensor has to send all of the information
it generates to the base station, and it has to send it in real time, with no ability to buffer
it and send only a fraction of it.

Thus, we are looking for a transmission scheme; namely, we explicitly assign for each
sensor what information it should send to each other sensor (and to the base station),
so that: (i) each sensor transmits one unit of information per second, and (ii) all of the
information a sensor transmits arrives finally to the base station. Our problem is to find
a transmission scheme that maximizes the lifespan of the network. Note that using several
different transmission schemes, one after the other, instead of a single transmission scheme
cannot improve the lifespan of the network. Indeed, we can combine all those transmission
schemes together into a single transmission scheme with the same lifespan. Specifically, if we
have schemes T7, . .., T}, serving for t1, . .., t; units of time, one after the other, then > ¢,7;/L
is a single transmission scheme with the same lifespan, where L =) t;.

2.1.1 Problem Statement

We are given a set S = {s1,...,5s,}, which is a set of points in the plane indicating the
locations of the sensors. Every sensor has a battery with b; units of energy in it, and it
has to send F; units for information to the base station, for + = 1,...,n. For the sake of
simplicity of exposition, we calibrate the units of data, and furthermore, assume that each
sensor sends one unit of information; namely, F} = F, = ..., F, = 1.

Given the location b of the base-station, let ¢(b) denote the optimal lifespan of the
network with a base station located at b. Let {op = max, g2 ¢(b) denote the optimal lifespan
of the network, when one is allowed to place the base-station in the best possible location.
Our purpose is to (1+¢)-approximate .. More precisely, given a prescribed parameter, we
describe an efficient algorithm for computing a location b, such that (1—¢)lyp < €(b) < lopt.
Of course, we provide together with the location, also the associated transmission scheme
that achieves this approximation.

2.1.2 Known location of base-station

If we know its location b, then ¢(b) and the associated transmission scheme T'(b) can
be computed using linear programming. We briefly describe this solution for the sake of
completeness.

Lemma 2.1 Given a set of sensors S and a base-station b, as above, then one can compute
a transmission scheme T(b) that realizes {(b), which is the longest lifespan of a network
placed at b. This is done by solving a single linear programming instance.

Proof: Consider the complete directed graph defined over S U {b}. We assign each edge
wv in this graph its price according to its length, namely ¢, = p;(||uv||); namely, this is the
amount of energy required to transmit one unit of information on this edge. We now define
a variable x,, that specifies the amount of information transmitted per second for each edge
uv in this graph. It is now straightforward to encode the standard conditions on this graph



as a set of linear inequalities. In particular, the amount of (data) “flow” (information per
second) into a sensor s; is equal to the amount of flow leaving the node, plus F; (the F;
additional flow is the sensor’s own information that needs to be transmitted), and the flows
are always non-negative. In order to model the lifespan objective, we let ¢ be the lifespan
of the network. Clearly, for a node u, the lifespan of the battery of u has to comply with
the inequality (ZUGV xuvcuv)t < b,, where V is the set of vertices of the graph, and b,
is the amount of energy in the battery of u. Dividing by ¢, we have Y i TuyCu < by/t.
Introducing a new variable T' = 1/t, we have EUGV TupCup < b, T, which a linear constraint.
Thus, we get a linear system of constraints, and our objective function is to minimize the
value of the variable T'. Solving this system, which is an instance of linear programming,
yields the desired network (and transmission scheme) having an optimal lifespan. |

2.2 A Constant-Factor Approximation

Our goal is to compute a location, b, of the base station and a corresponding transmission
scheme in order to maximize the lifespan of the network. We have seen that if the location
b is known, an optimal transmission scheme is found using linear programming. Now we
want to optimize over all choices of b.

For simplicity, we assume in the following that p;(r) = r*, though this assumption can
easily be modified to accommodate different constants used in Eq. ().

Lemma 2.2 Given a set of sensors S = {s1,...,s,}, one can compute a location for the
base station and a transmission scheme that approximates up to a constant factor the lifespan
of the optimal solution by solving n linear programmaing instances.

Proof: We claim that restricting the base station to be placed at the location of one of
the n sensors, and then taking the best from among these n choices, results in a constant-
factor approximation. Indeed, consider the optimal placement for the base station b, and
the optimal transmission scheme 7,;. Let s be the closest sensor to b, and consider the
solution generated by keeping the same flow as T,,; while moving the base station to s.
Clearly, each edge becomes longer by at most a factor of two, and, as such, the lifespan of
each battery goes down by at most a factor of p,(2r)/p;(r) = 2% = 16. n

2.3 An e-Approximation Algorithm

We now show how to improve the approximation factor from 16 (given in the proof of
Lemma [2.2)) to (1 +¢), for any fixed € > 0. In the following, we let ¢,,; be the lifespan of an
optimal solution.

We show that one can discretize the search space for the optimal choice of b. Thus, we
would have to check only a small number of possible solutions, the best one of which yields
the desired approximation. In particular, we show that the energy used by each sensor to
transmit directly to the base station is one of small number of possible levels.

Indeed, if we take an optimal transmission scheme and use it only for (1 — €/4)top
time, then the battery of each sensor s; would still have at least (¢/4)b; energy left in it.
We use this “leftover” energy as follows: the sensor s; sends information to several other



sensors and to the base station. Let «; be the total energy of s; that is used in an optimal
transmission scheme to send information directly to the base station. Next, we change the
energy allocation of b;. Each regular link that was allocated energy (3;; is now allocated energy
(1 —e/4)p;;. Furthermore, the link to the base station is allocated energy o) = m - b;/4,
where m = [4a;/(eb;)]. Clearly, >°.(1 —€)Bi; + aj < b;, and thus this allocation of energy
is valid (i.e., no sensor exhausts its battery).

Lemma 2.3 One can modify the optimal transmission scheme, such that each sensor trans-
mit to the base station uses O(1/e) possible levels of battery energy allocation. This dis-
cretizations reduces the lifespan of the network by a factor of (1 —¢€).

For a technical reason that will become clear shortly, we want to guarantee that no station
sends directly to the base station a quantity of information that is “too small.”

Lemma 2.4 Given a transmission scheme T with ((T), one can compute a transmission
scheme, T', such that any sensor s;, under the transmission scheme T' sends [3; bits of
information (a second) to the base station directly, and (3; is either 0 or larger than e/n*.
Furthermore, ((T") > (1 — e){(T).

Proof: We first note that T can be decomposed into O(n?) paths, so that the total
transmission scheme can be described as the summation of the flows along these paths,
where for each path 7 the flow starts at an initial sensor and ends in the base station. (For
“standard” network flow this is a well-known fact.)

To see why this is true in our case, consider a transmission scheme as a network flow f
in the graph G, where the sink in G is the base station. We start with an empty flow g, and
we increase it until it reaches f. For each edge e, let f(e) denote the original flow along e.
Indeed, pick any sensor v in GG for which g does not carry all of the flow from it to the sink,
with respect to the flow of f. In particular, let 1, be the amount of flow that is not handled
yet by g. Compute a path 7 from v to the sink (i.e., base station), such that each of the edges
e € 7 carries less flow in g than the corresponding flow in 7" (i.e., f(e) —g(e) > 0). Consider
the edge e along 7 that minimizes f(e) — g(e), and let u, be this capacity. We transmit
min(u,,7,) bits of information along 7 starting from v. Next, add the flow along 7 to g.
Clearly, at each iteration of this augmentation scheme, either a bottleneck edge (') is being
saturated, or alternatively, a node is being completely served (i.e., all the information that it
needs to transmit is being transmitted to the base station). It follows that we can perform
only O(n?) iterations of this algorithm, and this produces the required decomposition of T
into O(n?) path flows.

Returning to the proof of the claim, we need to rechannel every direct transmission to
the base station that is smaller than e/n*. Thus, assume that s; sends 3; bits to the base
station directly, and 3; < ¢/n*. Now, we attach ; to the path flow that goes through (or
starts at) s; with maximum flow on it. Clearly, this path flow must have a flow of at least
1/n? (since s; sends 1 unit of information to the base station, and there are at most n? path
flows in T"). Doing this for each sensor results in a new transmission scheme 7”, which is the
required transmission scheme.

Indeed, consider a path flow m, starting from a sensor s;, and observe that, if it was
modified, the initial flow along it was at least 1/n?. Each modification increased the flow



by at most n - e/n*. It follows that the flow along the path increased by at most a factor
of (14 ¢e/n). As such, the lifespan of this path flow by itself (i.e., we allocate this path the
same energy as in the energy allocated to it by 7") shrinks by at most a factor of 1/(1+¢/n),
which implies the claim, as this implies that ¢(T") > ¢(T)/(1 +¢/n) > (1 — e)l(T). n

Lemma 2.5 Given a transmission scheme T with ¢((T), one can compute a transmission
scheme T such that any station s; under the transmission scheme T' sends either 0 or
(1+¢/4)7e/n* units of information (per second) to the base station directly, for 1 < j < M,
where M = O((log(n/¢e))/e). Furthermore, ((T") > (1 —e)¢(T).

Proof: We apply Lemma to T" with €/3, and let 7" denote the resulting transmission
scheme, such that ¢(7") > (1 —¢/3)¢(T). Next, we go over the sensors, and for each sensor
that sends 3; > 0 information directly to the base station, we round it up to the closest value
(1 +&/4)’e/n* that is larger than (3;. This shortens the lifespan of the sensor by at most a
factor of 1/(1+4¢/4) > (1 —¢/2). Thus, for the resulting transmission scheme 7", we have
0T > (1 —e/2)UT") > (1 —¢/2)(1 —¢/3)UT) > (1 —e)l(T). u

Since by Lemma we can approximate the network lifespan within a constant factor of
optimal, it follows that we can assume that we know the optimal lifespan up to a factor of, say,
1—¢/4. Indeed, let ¢ be the lifespan computed by Lemmal[2.2, and consider ¢; = #'(1+¢/8)".
fori=1,..., M, where M = [log,, 32| = O(1/e), as can be easily verified. Clearly, there
exists a p, with 1 < p < M, such that ¢, <t,, < (1+¢/8)t,.

By checking all O(1/¢) possibilities, we can assume that we know ¢,, where t, < t,,; <
(1 +¢/8)t,. Similarly, by the above discussion, we know that the energy «; used in the
transmission from a sensor s; to the base station is one of O(1/¢) possible values: vy, ..., 7},
where v;; = j-eb;/4 and | = [4/e]. Finally, we can also guess the amount of information begin
sent, [3;, since it belongs to one of O(log(n/e)/e) possibilities. Each of these canonization
steps decreases the lifespan of the network by, say, a factor of (1 — ¢/10). Let 7 be the
resulting canonical transmission scheme. Clearly, £(T) > (1 — €/10)3top > (1 — )t opt-

Thus, for each sensor s;, we have a transmission scheme for which the parameters of the
sensor is one of O(log(n/c)/e?) triples of possible configurations for this sensor. Once we
know these three parameters, we can compute the maximum radius of transmission of the
sensor. Let 7(ay, (;,t,) denote this radius. Imagine now that we draw the set R; of disks
with these radii around s;, and let C' be the resulting set of circles. See Figure [I, This
set has O((n/e)log(n/e)) circles, and it is easy now to verify that the base station of 7T
can be moved to one of the vertices of 4(C) without changing the lifespan of 7. Since the
arrangement A(C) has at most O((n/e*)?log(n/e)) vertices, it follows that checking for
each one of these vertices the optimal possible solution, using the algorithm of Lemma [2.1]
results in computing a transmission scheme with lifespan at least (1 — &)t,p:.

Theorem 2.6 Given a set of sensors S = {s1,...,s,} and a parameter € > 0, one can
compute a location of the base station and a transmission scheme such that the network’s
lifespan is at least (1 — €)top, where toy is the lifespan of an optimal transmission scheme
for 8. This algorithm requires M = O((n/e®)*log*(n/c)) preprocessing and needs to solve
M instances of linear programming.



Figure 1: Sensors and their different level of transmission. An intersection point like p is a
candidate location for the base station.

2.4 A Faster Algorithm

In this section we present a faster approximation algorithm. Consider the set of disks R;
discussed in the previous section. For each s;, and each disk of R;, we place 47 /e equally
spaced points along the boundary of this disk. Let I" be the resulting set of points (for all
disks).

Lemma 2.7 Let tg be the optimal lifespan of the system when the base station is constrained
to lie at one of the points of I'. Then, to > (1 — 4&)topt.

Proof: Let v be a vertex of the arrangement of the disks of {R;} that maximizes the sys-
tem’s lifespan, under the optimal transmission scheme. Let D be the smallest disk containing
v, and let r be its radius. By shifting the base station from v to v/, we increase the transmis-
sion distance from each sensor to the base station by a factor of at most (1 + &/2), thereby
draining a factor of at most (1+¢/2)* more energy from its battery, and thus decreasing the
system lifespan by at most (1 + ¢/2)%. n

Motivated by Lemma [2.7] we solve a linear programming problem for each point of T
Since |I'| = O(n/e*log?(n/e)), the asserted bound is obtained. To summarize, we obtain the
following:

Theorem 2.8 Given a set of sensors S = {s1,...,s,} and a parameter € > 0, one can
compute a location of the base station and a transmission scheme such that the network
lifespan is at least (1 —€)ty,, where toy is the lifespan of an optimal transmission scheme for
S. This algorithms requires M = O(ne~*log®(n/e)) preprocessing time, and needs to solve
M instances of linear programminyg.



3 Sensors Placement Problems

In this section we study some problems related to locating sensors in a given region, (), in
a way that guarantees “robust” visibility (line-of-sight) coverage of ). We are motivated
by applications in which it is not enough to ensure that each point p € @) is seen by a
sensor. We require that more than one sensor sees p and that these sensors see p from
substantially different directions. We formalize this notion of robust sensing in two different
ways, discussed in the two subsections below.

Though not specifically detailed here, our algorithms based on the powerful Clarkson
[Cla93, BGI5] set cover methodology apply also with a wide variety of constraints on the
sensors, such as range constraints and view-angle constraints. Also, we focus here on the
case in which @) is a simple polygon; however, modifications of the coverage algorithms allow
them to apply to more general domains, such as three-dimensional structures (buildings)
and terrains.

At a high level, the core of the Clarkson [Cla93, BG95] technique is the idea of distribut-
ing weights among candidate locations of sensors, and selecting subsets of these candidate
locations at each main iteration of the algorithm. The larger the weight of a candidate lo-
cation, the greater the chance that this location will be selected, since the algorithm selects
new locations randomly according to a probability distribution given by the (normalized)
weights. If the resulting set of selected locations satisfies the covering criteria (e.g., @ is
2-guarded at angle « or is triangle-guarded), then we are done. Otherwise, we select a point
q € @ that is not yet “covered,” increase the weights of other candidate locations that “see”
¢, and continue. Clarkson [Cla93l [BG95] prove a bound on the number of iterations of the
main algorithm and prove that it yields a cover with small size compared to optimal; we
refer the reader to their paper for details.

3.1 Two-Sensors Visibility

Here we assume that we are given an angle a > 0, and two regions P and @), where ) C P.
Our goal is to place sensors within P that enable a “robust” coverage of the region Q).

We say that a sensor g sees a point p € @) if the segment connecting them does not cross
OP. We say that p is 2-guarded at angle o by sensors g; and g» that each see p if the angle
Zg1pgs is in the range [, m — «]. The motivation for this definition is, for example, use of
sensors in localization of an object (e.g., a particular animal) in a terrain, where two sensors
that each see the animal are needed to find the coordinates of the animal. Moreover, the
location of the animal and these two sensors should not be nearly collinear, as this leads
to errors in estimating the location of the animal. Thus, for robust localization, we desire
double coverage of each point of ) by two sensors that are well separated angularly with
respect to the point being covered.

We constrain all sensors to be located inside the region P, which, for the sake of simplicity,
we will assume here to be a simple polygon. We say that a set of sensors G C P guards @
(under standard visibility) if each point p € @ is seen by at least one sensor of G. We say
that @Q is 2-guarded at angle o by G if for each point p € @) there are two sensors g1, g in
G such that p is 2-guarded at angle a. We note that there may be no set G of guards that
2-guard @) at angle «, or, in some cases, such a set exists but is infinite in cardinality.



We present the following two-phase algorithm for finding a small set G of approximately
smallest cardinality among sets of guards that 2-guard (). In the fist phase, we find a set
G C P of approximately smallest cardinality that guards @ (under standard visibility); this
can be done, e.g., using the techniques of [EH02]. In the second phase, we find another set
G C P such that G; U G 2-guards @), but with angle «/2, rather than «.

The following lemma is used in justifying this approach.

Lemma 3.1 Let G* be a set of k* sensors that 2-gquard () at angle o. Let Gy be a set of
sensors that sees Q) (under standard visibility). Then, for any point p € Q there exist sensors
g1 € Gy and go € G* that 2-guard p at angle o /2.

Proof: Let go,95 € G* be two sensors that 2-guard p at angle > «. Let ¢y € G be a
sensor that sees p. If g1 is (clockwise around p) between go and g5, then it must form an
angle > «//2 with one of them; otherwise, it must form an angle > « with one of them. =

This lemma justifies the second phase of our algorithm, in which we find a second set of
sensors, Gy, that, together with G, 2-guard @ at angle a/2. Moreover, using the method
of [Cla93, BG95] we can be assured that the cardinality of what we produce, G; U Gy,
is O(k*logk*). Since the algorithm requires that the candidate guards are picked from a
discrete set, we impose a grid, I', in P, and pick vertices from the grid. The algorithm
follows almost identically the one used in [EH02|, so we omit its full details here. We should
emphasize, however, that the grid is not maintained explicitly, and is just used to select
vertices using an oracle that reports the number of grid points inside certain regions.

The technique of maintaining the weights is essentially the same as in [EH02|, so only
modifications are described here. We need also to describe how one can find a witness point
q that not 2-guarded by a current set G of guards. For this we establish 27 /(«/2) equally-
spaced rays emerging from each guard of G. These rays subdivide @) into regions. We overlay
these cones with the visibility arrangement of P. Let A be the resulting arrangement. For
every pair of two points p,p’ in the same region of A, if we create sets of cones around p
and p’ by placing 27/(a/2) equally-spaced cones around them, then a cone in some direction
contains a sensor g € GG that is visible to p if and only if the cone of the same direction of
p’ contains a sensor visible to ¢’. Thus, by checking whether each of the cones contains a
sensor visible to p, we can approximately decide if p is either a/2-guarded, not a-guarded,
or that the answer is not clear. Moreover, we further subdivide each cell of A so that the
circular order of the sensors around each point of a cell of A is the same. Such a subdivision
can be obtained by passing a line through each pair of sensors of G. Then it is not hard to
observe that it is enough to consider the maximal and minimal guards (in angular order)
among the guards that share the same cell of A, in order to determine which of the points
of the cell are actually «/2-guarded.

Theorem 3.2 Given P and Q) as above, an angle o, and a grid I' of edge-length 0 inside
P, we can find a set G of sensors in P such that G 2-guards @ at angle o/2, and |G| =
O (kopt 10g kopt), where kop is the cardinality of smallest set of vertices of I' that 2-guard Q) at
angle a. The running time of the algorithm is O(nkﬁpt log? nlogm), where m is the number
of vertices of ' N P.
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Figure 2: Example of a point p that is triangle-guarded by ¢;, g2, and g3.

3.2 Triangle-Guarding

Given P and @) as before, here we seek a set of guards GG such that each p € @ is seen by
three sensors and p is contained in the triangle they span. See Figure [2 This problem can
be presented in a slightly different way. We associate with each p € @) an infinitesimally
small opaque disk, and we require that we find sensors that see all points on the perimeter
of the disk. We can transform this problem to the following problem. Consider the region
Q = @ x[0,27) in a 3-dimensional space. The point (p,0) is associated with the lowest (i.e.,
with smallest y-coordinate) point of the tiny disk centered at p. Thus, we say that (p,0) € Q
is seen by ¢ if p is seen by g, and the angle |§ — 0| < 7/2, where 6, is the angle between the
segment pq and the negative y-axis.

A similar notion of “triangle guarding” is studied in Smith and Evans [SE03], who con-
sider the case in which the boundary of P is transparent, so does not limit the coverage of
a sensor, as it does in our case. They show that a simple polynomial-time greedy algorithm
optimally solves this version of the problem. (They also show that if the boundary of @ is
opaque and must be triangle-guarded with vertex guards, the problem is NP-hard.)

We begin by showing that the problem we are solving approximately is in fact NP-hard
to solve exactly:

Theorem 3.3 Deciding if k sensors within P suffice to triangle-guard () is NP-hard.

Proof: Our reduction is from the MINIMUM LINE COVERING PROBLEM (MLCP), which
is known to be NP-hard [MT82]. The MLCP has an input of a set of n non-parallel lines in
the plane, and the problem asks us to find a smallest number of points that cover the lines,
in the sense that each line is incident on at least one point.

Consider an instance of MLCP given by lines £ = {l,...,l,}, no two of which are
parallel, and let B be a large square that contains all vertices in the arrangement of £. Clip
each line [; outside B, and draw a polygon P just outside the union of B and the ends of
the clipped lines. The resulting polygon P is a box with “spikes,” having complexity O(n).
Define () to be a slightly smaller copy of P, just inside P. In order to triangle-guard the
“tips” of @), a sensor must be placed at the tip of each spike of P. Also, four sensors must
be placed in the corners of B in order to triangle-guard the interior of B. What remains

11
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Figure 3: The proof of hardness showing the reduction from the minimum line covering
problem (MLCP). The polygon P is shown in blue; the region @ is a slightly smaller copy
of P, just inside P. Just below one vertex in the arrangement of £, we show a black dot
representing a guard associated with the vertex; the guard, together with the guards in the
“tips” of the “spikes” of P participates in the triangle-guarding of the red region (a union
of three skinny triangles).

is to decide where to place additional sensors so that they, in conjunction with the sensors
at the tips of P, triangle-guard the spikes of () that extend outside of B into the spikes of
P. A sensor placed just below a vertex v in the arrangement allows triangle-guard coverage
of all 2i of the spikes of @ that correspond to the i lines of £ passing through v. (See
Figure ) Conversely, in order to triangle-guard a spike of (), there must be a sensor placed
(approximately) on the line that corresponds to the spike. Thus, k points suffice to cover
the lines £ if and only if 2n + k + 4 sensors suffice to triangle-guard Q. |

For our approximation algorithm, we again apply an algorithm based on [Cla93, [BG95],
after imposing a grid I" in P (not explicitly maintained). Weights associated with grid points
and selection of points from the grid are again done as in [Cla93, [BG95].

In order to determine whether or not a set GG of k sensors triangle-guards (), we do the
following.

Consider a point g € @ that is seen (using standard visibility) by G, and let G’ C G be
the set of sensors {g € G|g sees q}. Then ¢ is triangle-guarded by G’ if and only if ¢ is in
the convex hull CH(G"). Based on this observation, we propose the following algorithm:

1. Compute the visibility arrangement A of G in P. This is a subdivision of P into regions,
so that each each region is seen by the same set of sensors of (G. This arrangement is
formed by a set of line segments within P, where the segments are determined by “ray
shooting” as follows. Shoot a ray from each s; € G through each vertex of v € 9P
that is seen by v, and let &;(v) be the first point on P where the ray exits P. The
segments of the arrangement A are given by (s;,&(v)), the (clipped) wvisibility rays. Tt
is known [GMMN9(] that the complexity of A is O(nk?), and it can be computed in
time O(nk? 4+ nlogn).
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2. Compute the overlay arrangement of A and 0. This can be done by triangulating
each face of A (in time linear in the complexity of A), and then tracing 0Q) within the
arrangement 4, starting at any vertex of ). Since each segment of @) can intersect
only 2 visibility rays of each sensor s; € GG, the total number of intersection points of
0@ and triangles of A is O(nk). (Note that if we discover that no portion of @ lies in
a face of A corresponding to visibility from at least three guards, then clearly @ is not
triangle-guarded.)

3. Let A’ denote the resulting overlay arrangement, ANQ, restricted to (). We triangulate
each face of A’. For each triangle ¢ € A’, we find the set G, of sensors of G that see c.
We compute the convex hull, CH(G.), and in O(log k) time determine if dc intersects
CH(G.). If so, then any point of ¢\ CH(G.) (e.g., in the neighborhood of one of the
intersection points) represents a witness point to the fact that @ is not triangle-guarded
by G. Otherwise, we determine if ¢ if fully inside or fully outside CH(G.). A naive
implementation of this idea would run in time O(nk3logn), but a factor of k can be
saved by noting that two sets of sensors seeing two neighboring cells of A’ are different
by at most one sensor, and hence the convex hulls can be maintained dynamically: we
traverse A’ and at each time update the convex hull by adding or deleting one sensor.
The details are straightforward and omitted here.

Theorem 3.4 Given P and QQ as above, and a grid I" of edge-length 0, we can find a set G of
sensors in P, that triangle-guard Q, with |G| = O(kopt 108 kopt), where ko is the cardinality
of smallest set of vertices of I' that triangle-guard Q). The running time of the algorithm is

O(nkgpt log? nlogm), where m is the number of vertices of I' N P.
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