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Abstract—A spatial distance join is a relatively new type of operation introduced for spatial and multimedia database applications.

Additional requirements for ranking and stopping cardinality are often combined with the spatial distance join in online query

processing or Internet search environments. These requirements pose new challenges as well as opportunities for more efficient

processing of spatial distance join queries. In this paper, we first present an efficient k-distance join algorithm that uses spatial indexes

such as R-trees. Bidirectional node expansion and plane-sweeping techniques are used for fast pruning of distant pairs, and the plane-

sweeping is further optimized by novel strategies for selecting a sweeping axis and direction. Furthermore, we propose adaptive

multistage algorithms for k-distance join and incremental distance join operations. Our performance study shows that the proposed

adaptive multistage algorithms outperform previous work by up to an order of magnitude for both k-distance join and incremental

distance join queries, under various operational conditions.

Index Terms—Spatial databases, k-distance join, incremental distance join, adaptive query processing, multistage query processing,

plane sweeping, sweeping index, estimating cutoff distance.
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1 INTRODUCTION

Aspatial distance join operation was recently introduced
to spatial databases to associate one or more sets of

spatial data by distances between them [16]. A distance is
usually defined in terms of spatial attributes, but it can be
defined in many different ways according to various
application specific requirements. In multimedia and image
database applications, for example, other metrics such as a
similarity distance function can be used to measure a distance
between two objects in a feature space.

In online decision support and Internet search environ-
ments, it is quite common to pose a query that finds the best
k matches or reports the results incrementally in the
decreasing order of well-matchedness. These type of
operations allow users to interact with database systems
more effectively and focus on the “best” answers. Since
users can say “it is enough already” at any time after
obtaining the best answers [9], the waste of system
resources can be reduced and, thereby, delivering the
results to users more quickly.

This ranking requirement is often combined with a
spatial distance join query, and the ranking requirement
provides a new opportunity of optimization for spatial
distance join processing [10], [12]. For example, consider a
query that retrieves the top k pairs (i.e., the nearest pairs) of
hotels and restaurants:

SELECT h.name, r.name

FROM Hotel h, Restaurant r ORDER BY

distance(h.location, r.location)

STOP AFTER k;

For a relatively small stopping cardinality k, the processing
time can be reduced significantly by sorting only a fraction
of intermediate results enough to produce the k-nearest

pairs, instead of sorting an entire set of intermediate results
(i.e., a Cartesian product of hotels and restaurants).

A spatial distance join query with a stopping cardinality
can be formulated as follows:

�distðr;sÞ<DmaxðR ffl SÞ;

where distðr; sÞ is a distance between two spatial objects
r 2 R and s 2 S, and Dmax is a cutoff distance that is
determined by a stopping cardinality k and the spatial
attribute values of two data sets R and S. It may then be
argued that a spatial distance join query can be processed
by a spatial join operation [1], [7], [8], [18], [19], [23]
followed by a sort operation. Specifically, if a Dmax value
can be predicted precisely for a given stopping cardinality
k, we can use a spatial join algorithm with a within

predicate instead of an intersect predicate to find the
k-nearest pairs of objects. Then, a sort operation will be
performed only on the k pairs of objects.

In practice, however, it is almost impossible to estimate
an accurate Dmax value for a given stopping cardinality k

and, to the best of our knowledge, no method for estimating
such a cutoff value has been reported in the literature. If the
Dmax value is overestimated, then the results from a spatial
join operation may contain too many candidate pairs, which
may cause a long delay in a subsequent stage to sort all the
candidate pairs. On the other hand, if the Dmax value is
underestimated, a spatial join operation may not return a
sufficient number of object pairs. Then, the spatial join
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operation should be repeated with a new estimate of Dmax
until k or more pairs are returned. This may cause a
significant amount of waste in processing time and
resources.

There is another reason that makes it impractical to
apply a spatial join algorithm to spatial distance join
queries. A spatial join query is typically processed in two
steps, filter and refinement, as proposed in [21]. In a filter
step, MBR approximations are used to find pairs of
potentially intersected spatial objects. Then, in a refinement
step, it is guaranteed that all the qualified (i.e., actually
intersected) pairs can be produced from the results returned
from the filter step.

In contrast, it is completely unreasonable to process a
spatial distance join query in two separate filter and
refinement steps, because of the fact that a filtering process
is based on MBR approximations. A set of object pairs
sorted by distances measured by MBR approximations
does not reflect a true order based on actual representa-
tions. This is because, for any two pairs of spatial objects
hr1; s1i and hr2; s2i, the fact that distðMBRðr1Þ;MBRðs1ÞÞ <
distðMBRðr2Þ;MBRðs2ÞÞ does not necessarily imply that
distðr1; s1Þ < distðr2; s2Þ. Consequently, any processing
done in the filter step will be of no use for finding the
k-nearest object pairs.

In this paper, we propose new strategies for efficiently
processing spatial distance join queries combined with
ranking requirements. The main contributions of the
proposed solutions are:

. New efficient methods are proposed to process
distance join queries using spatial index structures
such as R-trees. Bidirectional node expansion and
optimized plane-sweep techniques are used for fast
pruning of distant pairs, and the plane-sweep is
further optimized by novel strategies for selecting a
sweeping axis and direction and by using maximum
distance for breaking tied pairs.

. Adaptive multistage algorithms are proposed to
process distance join queries in a way that the
k-nearest pairs are returned incrementally. When a
stopping cardinality is not known a priori (e.g., in
online query processing environments or a complex
query containing a distance join as a subquery whose
results need to be pipelined to the next stage of the
complex query), the adaptive multistage algorithms
can produce pairs of objects in a stepwise manner.

. We provide a systematic approach for estimating the
maximum distance for a distance join query with a
stopping cardinality. This estimated distance allows
the adaptive multistage algorithms to avoid a slow
start problem, which may cause a substantial delay

in the query processing. This approach for estimat-
ing the maximum distance also allows the size of
memory to be parameterized into a queue manage-
ment scheme, so that data movement between
memory and disk can be minimized.

The proposed algorithms achieve up to an order of
magnitude performance improvement over previous work
for both k-distance join and incremental distance join
queries, under various operational conditions.

The rest of this paper is organized as follows: Section 2
surveys the background and related work on processing
spatial distance join queries. Major limitations of previous
work are also discussed in this section. In Section 3, we
present a new improved algorithm based on bidirectional
expansion and optimized plane-sweep techniques for
k-distance join queries. In Section 4, adaptive multistage
algorithms are presented for k-distance join and incremental
distance join queries. A queue management scheme para-
meterized by memory capacity is also presented. Section 5
presents the results of experimental evaluation of the
proposed solutions. Finally, Section 6 summarizes the
contributions of this paper.

2 BACKGROUND AND PREVIOUS WORK

A spatial index structure R-tree and its variants [3], [6], [14]
have been widely used to efficiently access multidimen-
sional data—either spatial or point. Like other tree-
structured index methods, an R-tree index partitions a
multidimensional space by grouping objects in a hierarch-
ical manner. A subspace occupied by a tree node is always
contained in the subspace of its parent node. This hierarchy
of spatial containment between R-tree nodes is readily used
by spatial distance join algorithms as well as spatial join
algorithms.

Suppose r and s are nonleaf nodes of two R-tree indexes
R and S, respectively, as in Fig. 1. Then, the minimum
distance between r and s is always less than or equal to the
minimum distance between one of the entries of r and one
of the entries of s. Likewise, the maximum distance between
r and s is always greater than or equal to the maximum
distance between one of the entries of r and one of the
entries of s. This observation leads to the following lemma.

Lemma 1. For two R-tree indexes R and S, if neither r 2 R nor
s 2 S is a root node, then

distðr; sÞ � distðparentðrÞ; parentðsÞÞ;
distðr; sÞ � distðr; parentðsÞÞ;
distðr; sÞ � distðparentðrÞ; sÞ;

ð1Þ

where distðr; sÞ is the minimum distance between the MBR
representations of r and s.
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Fig. 1. Hierarchy of spatial containment of R-tree nodes. (a) Tree-structured spatial index. (b) Spatial containment.



Proof. From the observation above. tu

Lemma 1 allows us to limit the search space, while R-tree
indexes are traversed in a top-down manner to process a
spatial distance join query. For example, if a pair of nonleaf
nodes hr; si turn out to be too far from each other (or their
distance is over a certain threshold), then it is not necessary
to traverse further down the tree indexes below the nodes r
and s. Thus, this lemma provides the key leverage to
processing distance join queries efficiently using R-tree
indexes.

2.1 Incremental Distance Join and k-Distance Joins

During top-down traversals of R-tree indexes, it is desirable
to store examined node pairs in a priority queue, where the
node pairs are kept in an increasing order of distances. We
call it a main queue as opposed to a distance queue we will
describe later. The main queue initially contains a pair of
the root nodes of two R-tree indexes. Each time a pair of
nonobject nodes are retrieved from the main queue, the
entries of one node are paired up with the entries of the
other to generate a new set of node pairs, which are then
inserted into the main queue. This process that we call node
expansion is repeated until the main queue becomes empty
or until stopped by an interactive user. If an element
retrieved from the main queue is a pair of two objects, the
pair is returned immediately to the user as a query result.
This is how a spatial distance join query is processed
incrementally. Fig. 2 depicts a typical framework of proces-
sing an incremental distance join (IDJ) query using R-tree
indexes.

A distance join query is often given with a stopping
cardinality k as in the “stop after” clause of the sample
query in Section 1. Since it is known a priori how many
object pairs need to be produced for a distance join query,
this knowledge can be exploited to improve the perfor-
mance of the query processing. Suppose a maximum of
k-nearest pairs of objects are to be retrieved by a query.
One plausible approach is to maintain k candidate pairs of
objects during the entire course of query processing. As
they are the k-nearest object pairs known at each stage of
query processing, any pair of nodes (and any pair of their
entries) whose distance is greater than all of the k candidate
pairs cannot be qualified as a query result. Thus, we can
use another priority queue to store the k minimum

distances and use the queue to avoid having to insert
unqualified pairs into the main queue during the node
expansions. We call the priority queue a distance queue.
Fig. 3 depicts a typical framework of processing a
k-distance join (KDJ) query using R-tree indexes and both
main and distance queues.

Both main and distance queues can be implemented by
heap structures. A main queue is normally implemented as
a min-heap because the query results are produced in an
increasing order of distances. In contrast, a distance queue
should be implemented as a max-heap that can store at most
k distance values. The cutoff distance is determined by the
maximum value among the k distances stored in the
distance queue. (When the distance queue contains less
than k distances, the cutoff distance is set to an infinity.)
Pruning node pairs by the distance queue was shown to be
very efficient from our experiments, especially when k was
rather small. In the rest of the paper, we use qDmax to denote
the cutoff distance from the distance queue.

2.2 Previous Work

In [16], the authors present both unidirectional and
bidirectional node expansion, but conclude based on their
experiments that the former provides better performance
due to fewer node pairs being produced by their algorithm.
When a pair of nodes hr; si are retrieved from a main queue,
either node r is paired up with the entries of s, or node s is
paired up with the entries of r. None of the pairs are
generated from an entry of r and an entry of s. The
advantage of the unidirectional expansion is that the
number of pairs generated at each expansion step is limited
to the fanout of an R-tree index being traversed, and an
explosion of the main queue can be avoided. As is
acknowledged by the authors of the algorithms, however,
the main disadvantage of this approach is that the
unidirectional expansion may lead to each node being
accessed from disk more than necessary. Also, the
unidirectional expansion requires pairing up node r
exhaustively with all the entries of node s or vice versa.

For a spatial distance join query with a relatively small
stopping cardinality k, the use of a distance queue is an
effective means to prevent distant pairs from entering a
main queue. For a large k value, however, the distance
queue may not work well as an effective pruning tool
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Fig. 2. Framework of incremental distance join (IDJ) processing.
Fig. 3. Framework of k-distance join (KDJ) processing.



because the cutoff value stored in the distance queue may
remain too high for a long duration. This may in turn lead
to a long delay particularly in the early stage of query
processing. For these reasons, the previous algorithms
suffer from poor performance for a k-distance join query
with a large k and an incremental distance join query, for
which k is unknown in advance.

Moreover, there is an important issue that was not fully
addressed in [16]. A hybrid memory/disk technique was
proposed as a queue management scheme, which partitions
a queue based on the distance range. This technique keeps a
partition in the shortest distance range in memory, while
the rest of partitions are stored on disk. However, no
mechanism was provided to determine a boundary distance
value between the partition in memory and the rest, which
may have a crucial impact on the performance of queue
management.

Recently, a few recursive and iterative algorithms have
been proposed [11]. These algorithms make use of various
distance metrics such as MinMax, MinMin, MaxMin, and
MaxMax to find k closest pairs. Without using a main
queue, the recursive algorithms access R-tree nodes recur-
sively following priorities given to the entry pairs within a
pair of the parent nodes. The iterative algorithm (called
heap algorithm) is fairly similar to Hjaltason and Samet’s
distance join algorithm [16] in that both the algorithms use a
distance queue to maintain k candidate pairs during node
expansion. One notable difference is that the heap algorithm
does not store object pairs in the main queue to minimize
the size of a main queue. Instead, the heap algorithm uses a
distance (or candidate) queue to store the k closest pairs of
objects. Although this does not guarantee that the main
queue always fits in memory, the performance gain by not

storing object pairs in the main queue could be nontrivial,
given the potentially large number of object pairs produced
by node expansion. Since the heap algorithm maintains
only the k candidates, the stopping cardinality k must be
known a priori. In other words, the heap algorithm cannot
be used for incremental distance join queries.

Several closely related studies for nearest neighbor
queries have been reported in the literature. Among those
are nearest neighbor search algorithms based on Voronoi
cells [2], [5] and branch and bound techniques [26], [27], a
nearest neighbor search algorithm for ranking require-
ment [15], and multistep k-nearest neighbor search
algorithms [17], [28].

Another closely related issue is estimating spatial join
selectivity. Some estimation techniques proposed to use
supplementary structures such as histograms [24] and
wavelets [29]; other estimation techniques were based on
uniformity assumption [22] and fractal dimensions for self
joins [4]. Recently, Faloutsos et al. [13] proposed a power
law to predict the selectivity of spatial join and to estimate
the distance of the kth closest pair. This power law will be
used to estimate cutoff distances for the adaptive distance
join algorithm proposed in this paper.

3 OPTIMIZED PLANE-SWEEP FOR FAST PRUNING

In this section, we propose a new distance join algorithm
B-KDJ (Bidirectional expanding k-Distance Join) using a
bidirectional node expansion in an attempt to avoid
redundant accesses to R-tree nodes (Fig. 4). As is pointed
out in Section 2, distance join algorithms based on a
unidirectional expansion require accessing an R-tree node
more than those based on bidirectional expansions. Under
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Fig. 4. Algorithm 1 (B-KDJ): K-distance join algorithm with bidirectional expansion and plane sweep.



the bidirectional node expansion, for a pair hr; si, each of the
entries of r is paired up with each of the entries of s. This is
essentially a Cartesian product, which may generate more
redundant pairs than the unidirectional expansion does.
Nonetheless, we will show that the B-KDJ algorithm can
effectively avoid generating redundant pairs by a plane-
sweeping technique [25] and novel strategies for choosing
an axis and a direction for sweeping. The B-KDJ algorithm
is described in Algorithm 1.

3.1 Bidirectional Node Expansion

Like the distance join algorithms proposed in [16], the
B-KDJ algorithm uses qDmax from the distance queue QD
as a cutoff value to examine node pairs. If a pair of nodes
hr; si removed from the main queue are a pair of objects,
then the object pair is returned as a query result. Otherwise,
the pair is expanded by the PlaneSweep procedure for
further processing.

Assume that a sweeping axis (i.e., x or y dimensional
axis) and a sweeping direction (i.e., forward or backward)
are determined, as we will describe in Sections 3.2 and 3.3.
Then, the entries of r and s are sorted by x or y coordinates
of one of the corners of their MBRs in an increasing or
decreasing order, depending on the choice of sweeping axis
and sweeping direction. Each node encountered during a
plane sweep is selected as an anchor, and it is paired up
with entries in the other group. For example, in Fig. 5, an
entry r1 of r is selected as an anchor, and the entries s1, s2,
s3, and s4 of s are examined for pairing, as they are within
qDmax distance from r1 along the sweeping axis (lines 11-14
and line 16).

Since an axis distance between any pair hr; si is always
smaller than or equal to their real distance (i.e.,
axis distanceðr; sÞ � real distanceðr; sÞ), real distances are
computed only for nodes whose axis distances from the
anchor are within the current qDmax value (line 17). Given
that a real distance is more expensive to compute than an
axis distance, it may yield nontrivial performance gain.
Then, each pair whose real distance is within qDmax is
inserted into the main queue QM (line 18). If it is a pair
of objects, then update the current qDmax value by
inserting the real distance of the object pair into the
distance queue QD (line 19).

There are alternatives as to what pairs are to be inserted
into a distance queue: 1) any pairs encountered during node

expansions or 2) pairs of objects only. If a pair of nonobject
R-tree nodes is inserted into a distance queue, then its
distance value should be the maximum distance (instead of
minimum distance), and the minimum number of object
pairs that can possibly be generated from the node pair
should be maintained in the distance queue, as pointed out
in [16]. The minimum number of object pairs can be
estimated based on the minimum node occupancy. Since
the maximum distance tends to be larger than those of pairs
of objects, most nonobject pairs are inserted into a distance
queue only to be removed from the distance queue without
reducing qDmax value. Consequently, the potential benefit
from inserting nonobject pairs is expected to be insignif-
icant. More often than not in our experiments, the query
processing slowed down slightly due to the overhead of
inserting nonobject pairs. Thus, we decide to follow the
second option in this paper.

For a relatively small qDmax value and two sets of evenly
distributed spatial objects, the number of pairs for which
the B-KDJ algorithm computes real distances and per-
forms queue management operations is expected to be
roughly Oðjrj þ jsjÞ. This justifies the additional cost of
sorting entries for plane-sweeping, because the overall cost
of the B-KDJ algorithm would otherwise be Oðjrj � jsjÞ by
Cartesian products.

3.2 Sweeping Axis

We can improve the B-KDJ algorithm one step further by
deciding the sweeping axis and direction on an individual
pair basis. Intuitively, if entries (or data objects) are spread
more widely along one dimension (say, x) than the other
dimensions, then the bidirectional node expansion is likely
to generate a smaller number of node pairs to compute the
real distances by plane-sweeping along the dimension x.
This is because, when the nodes are more widely spread
along a sweeping axis, the chance that a pair of nodes are
within a qDmax distance along the sweeping axis is lower.
For a pair of parent nodes shown in Fig. 6, as an example, it
would be better to choose the y-axis as a sweeping axis, as
the entries are more widely spread along the y-dimension.
On the other hand, if the x-axis is chosen as a sweeping axis,
no pair of the entries will be pruned by x-axis distance
comparison with qDmax because the x-axis distance between
any pair of the entries is shorter than the qDmax value.

Formally, we define a new metric sweeping index as
follows, and we use the metric to determine which axis a
plane-sweep will be performed on. For a given pair hr; si of
R-tree nodes and a given qDmax value, we can compute a
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Fig. 5. Bidirectional node expansion with plane sweeping.

Fig. 6. Effect of right selection of the sweeping axis.



sweeping index for each dimension. Conceptually, a
sweeping index is a normalized estimation of the number
of node pairs we need to compute the real distances for
based on the assumption that data objects are uniformly
distributed.1

Sweeping Indexx ¼
Z jrjx

0

OverlapðqDmax; r; tÞdt

þ
Z jsjx

0

OverlapðqDmax; s; tÞdt:
ð2Þ

In the first integral term of the equation above, jrjx is the
side length of node r along the dimension x. The function
OverlapðqDmax; r; tÞ is a portion of the side length of s along
the dimension x, overlapped with a window of length
qDmax whose left end point is located at a point t within jrjx
(i.e., 0 � t � jrjx). (See the left diagram in Fig. 7.) Thus,
OverlapðqDmax; r; tÞ=jsjx represents a fraction of s’s entries
intersected with a window ½t; tþ qDmax�. The value of the
function varies as the window moves along the dimension x
from ½0; qDmax� to ½jrjx; jrjx þ qDmax�. Therefore, the first
integral term represents a relative estimation of the number
of s’s entries encountered during the plane-sweeps per-
formed for all the entries of r. The second integral term is
symmetric with the first integral, and an identical descrip-
tion can be offered by exchanging r and s.

A smaller sweeping index indicates that the bidirectional
expansion needs to compute real distances for a smaller
number of nodes pairs. For this reason, the B-KDJ
algorithm chooses a dimension with the minimum sweep-
ing index as a sweeping axis.

One thing we may be concerned about is the cost of
computing a sweeping index for each dimension. The
sweeping index may appear expensive to compute, as it
includes two integral terms. For given jrjx and jsjx values
and the current qDmax value available from the distance
queue, however, the sweeping index is reduced to a
formula that involves only a few simple arithmetic
operations. Suppose nodes r and s are not intersected along
a dimension x, the minimum x-axis distance between them
is � and node r appears before node s in the plane-sweep
direction along x-axis. (Again, see the left diagram in Fig. 7.)
Then, the second integral term of (2) becomes zero because
all the entries of r have already been swept when the first
entry of s is encountered. The first integral term varies

depending on the conditions among qDmax, jrjx, and jsjx
values and the proximity (i.e., �) of nodes r and s along a
chosen dimension. The right diagram in Fig. 7 illustrates
how we can compute the first integral term and obtain a
simple expression when a condition � � qDmax � � þ
minfjrjx; jsjxg is satisfied.

If nodes r and s are not separated, both the integral terms
of (2) become nonzero. By similar reasoning, each integral
term is also transformed into a formula with only a few
simple arithmetic operations. Table 1 summarizes the
formulae of the sweeping index for nodes r and s that are
in three different spatial relationships: s is separated from,
intersected with, or contained in r. The values of �, �, and �
in Table 1 are determined by the side lengths of r and s and
their spatial relationship as illustrated in Fig. 8.

Considering that each R-tree node may contain hundreds
of entries, it will be a trivial cost to compute a sweeping
index for each dimension, while the performance gain by
the sweeping axis selection is expected to be significant.
This is empirically corroborated by our experiments in
Section 5.

3.3 Sweeping Direction

Once a sweeping axis is determined, a sweeping direction
can be chosen to be either a forward sweep or a backward
sweep. For a pair of nodes r and s, we can define the
forward and backward sweeps as follows:

. A forward plane-sweep scans the entries of r and s
in an increasing order of coordinates along the
chosen sweeping axis.

. A backward plane-sweep scans the entries of r and s
in a decreasing order of coordinates along the chosen
sweeping axis.

Consider nodes r and s projected on a sweeping axis. The
projected images generate three consecutive closed inter-
vals on the sweeping axis, unless the projected images are
completely overlapped. For example, if nodes r and s are
intersected as in Fig. 8b, an interval in the left is projected
from r, one in the middle from both r and s, and one in the
right from s. The interval in the middle may be projected
from none of r and s if r and s are separate as in Fig. 8a.
Both the intervals in the left and right may be projected
from the same node if one node is contained in the other as
in Fig. 8c.

However, it does not matter which node an interval is
projected from because a sweeping direction is determined
solely on the relative length of the intervals in the left and
right (i.e., � and �). A sweeping direction is determined by
comparing the length of the left and right intervals: If the left
projected interval is shorter than the right one (� < �), then a
forward direction is chosen. Otherwise, a backward direction is
chosen. By this strategy of choosing a sweeping direction, a
pair of nodes closer to each other are likely to be examined
earlier than those farther from each other. This in turn
allows a pair of closer nodes to be inserted into the main
queue (and the distance queue as well if they are an object
pair) and helps reduce the qDmax value more rapidly.

In summary, the sweeping axis selection improves the
bidirectional node expansion step by pruning more pairs of
entries whose axis distances are larger than the qDmax value,
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1. An actual number of node pairs for which we need to compute the real
distances would be computed by counting the number of s’s entries within
qDmax axis distance from each entry of r, counting the number of r’s entries
within qDmax axis distance from each entry of s, and then adding all the
counts and dividing the count sum by two. However, this process will be
very expensive.

Fig. 7. Sweeping index.



while the sweeping direction selection does so by reducing

the qDmax value more rapidly.

3.4 Maximum Distance as a Secondary Priority

The main queue maintains node pairs generated by node

expansion in an increasing order of their distances. An issue

we have not addressed is how we order node pairs of an

equal distance in the main queue. This is a nontrivial issue

particularly because a pair of intersected nodes are

considered to have zero distance between them. Since there

may be many pairs of intersected nodes in the main queue,

the performance impact by the way of breaking ties is
potentially high.

Hjaltason and Samet used the depths of R-tree nodes to
break tie [16]. For two given pairs of nodes of an equal
distance, they proposed to give preference to a pair that
contains a node with the maximum tree depth among the
four tree nodes. This approach may assist their distance join
algorithms in getting to leaf nodes and data objects as
quickly as possible. However, it is not always beneficial to
process node pairs in depth-first order because it does not
always accelerate the reduction of qDmax value.
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TABLE 1
The First and Second Integral Terms of the Sweeping Index for r and s

The values of �, �, and � are determined by the relative positions of r and s as illustrated in Fig. 8.

Fig. 8. Spatial relationships between nodes r and s and their projected intervals. (a) Seperated. (b) Intersected. (c) Contained.



Consider two node pairs A and B in Fig. 9 as an example.
If we follow the depth-first approach, node pair B will be
placed before node pair A in the main queue because the
former contains a node whose depth is deeper than those of
the nodes in the latter. However, it is very likely that node
pair A contains more pairs of entries with shorter distances
than node pair B does because the maximum distance of
node pair A is shorter than that of node pair B. Based on this
observation, we propose to use the maximum distance of a
node pair to break ties. By choosing the maximum distance
of a node pair as a secondary priority of heap (i.e., the main
queue), node pairs with shorter distances can be processed in
the earlier stage of distance join. Consequently, qDmax value
can be reduced more rapidly and the number of distance
computations and queue insertions can be reduced.

4 ADAPTIVE MULTISTAGE k-distance JOIN

In the B-KDJ algorithm, qDmax value is initially set to an
infinity and becomes smaller as the algorithm proceeds.
The adaptation of the qDmax value has a crucial impact on
the performance of the B-KDJ algorithm, as qDmax is used
as a cutoff to prevent pairs of distant nodes from entering
the main queue. If the qDmax value approaches to the real
Dmax value slowly, the early stage of the B-KDJ algorithm
will be delayed considerably for handling too many pairs of
distant nodes. Consequently, at the end of the algorithm
processing, the main queue may end up with a large
number of distant pairs whose insertions to the main queue
were not necessary. The performance effect of slow start is
more pronounced for a larger k, as the main queue and
distance queue tend to grow large for a large k and,
thereby, increasing the qDmax value. From our experiments
with k as high as 100,000, we observed that more than
90 percent of execution time of k-distance join algorithms
was spent to produce the first one percent (i.e., 1,000 pairs)
of final query results.

In this section, we propose new adaptive multistage
distance join algorithms AM-KDJ and AM-IDJ that
mitigate the slow start problem by aggressive pruning and
compensation.

4.1 Adaptive Multistage k-distance Join

The slow start problem is essentially caused by a pruning
strategy using qDmax, whose value is dynamically updated
as tree indexes are traversed and, therefore, not under direct
control of the distance join algorithms. To circumvent this
problem, we introduce a new pruning measure eDmax,
which is an estimated Dmax value for a given k. The eDmax
value is set to an initial estimation at the beginning and

adaptively corrected during the algorithm processing. We
will discuss techniques for initial estimation and adaptive
correction in Section 4.3.

The AM-KDJ algorithm is similar to the B-KDJ
algorithm in that both the algorithms use a bidirectional
node expansion. However, unlike the single-stage B-KDJ
algorithm, where only qDmax is used for pruning, both
qDmax and eDmax are used as cutoff values for pruning
distant pairs in the AM-KDJ algorithm. Specifically, in the
aggressive pruning stage (described in Algorithm 2 (Fig. 10)),

. eDmax is used for pruning based on axis distances for
aggressive pruning and thereby limiting the size of
main and distance queues (line 22).

. qDmax is used for further pruning on real distances for
nodes whose axis distances are within eDmax in the
same way as B-KDJ.

With a properly estimated eDmax value, the AM-KDJ
algorithm can prune a large number of distant pairs in the
first stage and avoid a significant portion of delay due to the
slow start. However, if the AM-KDJ algorithm becomes
too aggressive by choosing an underestimated eDmax value,
even close enough pairs may be discarded incorrectly. To
avoid any false dismissals, we introduce another queue
called compensation queue (QC). The compensation queue
stores every nonobject node pair retrieved from the main
queue (line 11), except those for whom all entries have been
examined. Note that qDmax, but not eDmax, is used for nodes
whose axis distances are within eDmax. If eDmax values are
used instead, this algorithm does not guarantee the
correctness due to potential false dismissals. Using qDmax
values also makes the performance of AM-KDJ fairly
insensitive to estimated eDmax values.

For example, in Fig. 11 (drawn from Fig. 5), an anchor
node r1 is paired up with nodes s1 and s2, but not with s3

and s4 in the aggressive pruning stage because only s1 and
s2 are within eDmax from the anchor node r1. Thus, the
AM-KDJ algorithm inserts only two pairs (hr1; s1i; hr1; s2i)
into a main queue, instead of all four pairs (hr1; s1i; hr1; s2i;
hr1; s3i; hr1; s4i) that would be enqueued by the B-KDJ
algorithm. Then, the pair hr; si currently being expanded is
inserted into a compensation queue.

The aggressive pruning stage ends when one of the
following conditions is satisfied: 1) the main queue becomes
empty (line 5), 2) k or more query results have been returned
(line 5), or 3) the distance of a node pair retrieved from the
main queue becomes greater than eDmax (line 9). When
condition 2 is satisfied, obviously it is not necessary to
execute the compensation stage of the AM-KDJ algorithm.
(An overestimated eDmax can also be detected by comparing
with qDmax value (line 8). In this case, instead of terminating
the first stage, AM-KDJ behaves exactly the same as the
B-KDJ algorithm by using qDmax alone as a cutoff value.)
When condition 3 is satisfied, eDmax must have been
underestimated because all the object pairs returned after
this point will have a greater distance than eDmax. Since an
object pair with the kth largest distance has not been obtained
by the time when the aggressive pruning stage comes to an
end, the compensation stage (described in Algorithm 3
(Fig. 12)) begins its processing by inserting all the pairs
stored in the compensation queue to the main queue.
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Fig. 9. Breaking ties for node pairs of an equal distance.



In the compensation stage, the pairs in the main queue

are processed in a similar way as the B-KDJ algorithm, but

there are two notable differences from the B-KDJ algo-

rithm. First, the entries are not sorted again, if they have

already been sorted in the first stage. Second, for the pairs

already expanded once in the first stage, only child pairs

not examined in the first stage are processed by plane

sweeping. This is feasible by bookkeeping done in the first
stage (lines 19 and 21), which stores the information in an

additional field (n:compensate) attached to a pair being

inserted into the compensation queue. For these reasons,

the cost of the compensation stage is not considerable

compared with the cost of restarting the algorithm. In

summary, the AM-KDJ algorithm uses eDmax to avoid the
slow start problem in the aggressive pruning stage and

speeds up the query processing.

4.2 Adaptive Multistage Incremental Distance Join

Consider online query processing and Internet database

search environments, where users interact with database

systems in a way the number of required matches can be

determined interactively or changed at any point of query

processing. Also, consider a complex query that pipelines

the results from a spatial distance join to a filter stage.

Under these circumstances, the number of pairs (k) that
should be returned from a distance join is not known a

priori and, hence, a k-distance join algorithm proposed in

[16] and the B-KDJ algorithm presented in Section 3 cannot

be used directly.
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An important advantage of the AM-KDJ algorithm

proposed in the previous section is that the AM-KDJ

algorithm can be extended to an incremental algorithm

(we call AM-KDJ) to support the interactive applica-

tions described above. The main difference between the

AM-KDJ and AM-IDJ algorithms is that AM-IDJ

does not maintain a distance queue. Thus, the AM-IDJ

algorithm uses eDmax alone as a cutoff value for pruning

distant pairs because qDmax would be drawn only from a

distance queue.
Without qDmax, AM-IDJ works as a stepwise incre-

mental algorithm. First, AM-IDJ starts by determining an

initial value k1 and estimating an initial eDmax1 for k1. Then,

it performs the same way as the first stage of the AM-KDJ

algorithm without qDmax. However, the first stage may

terminate before producing enough object pairs (i.e., less

than k1) if eDmax is underestimated. If that happens, the

AM-IDJ algorithm estimates eDmax2 value for k2 ðk2 > k1Þ
and initiates a compensation stage.

Even when a sufficient number of object pairs have been

returned from the first stage, users may request more

answers. Then, AM-IDJ initiates a compensation stage by

determining k2 and estimating a new eDmax2 accordingly. As

shown in Fig. 13 (drawn from Fig. 5), the compensation

stage can initiate another compensation stage at the end of

its processing, by choosing k3 and eDmax3. This process

continues until users stop requesting more answers. In this

way, the AM-IDJ algorithm can be used to produce query

results incrementally without limiting the maximum num-

ber of pairs in advance. Except the first stage of theAM-IDJ

algorithm where the AggresivePlaneSweep procedure (in

Algorithm 2) is used, the CompensatePlaneSweep proce-

dure (in Algorithm 3) is used to prune distant pairs in the

rest of the compensation stages.

4.3 Estimating the Maximum Distance (eDmax)
Both the AM-KDJ and AM-IDJ algorithms process a
distance join query based on an estimated cutoff value

eDmax. Thus, there should be a way to obtain an initial

estimate and correct the estimate adaptively as the algo-

rithms proceed. Assuming data sets are uniformly distrib-

uted, we provide mechanisms to choose an initial estimate of

eDmax and to adaptively correct it.
If the distribution of a data set is skewed, then a larger

number of close pairs can be found in a smaller dense

region of the data space. We expect that the formulae given

in this section tend to overestimate eDmax value for

nonuniformly distributed data sets, especially when a

stopping cardinality k is far smaller than the number of

all pairs of objects (i.e., k� jRj � jSj). This was corrobo-

rated by our experiments as described in Section 5.4.
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4.3.1 Initial Estimation

Let jRj and jSj be the number of data objects in MBRs R and
S, respectively. Suppose that most regions of R and S
overlap. Then, for a data object r in R contained in the
region shared by R and S, the expected number of objects
in S within distance d from r is approximated by
jSj � ��d2

areaðR\SÞ , assuming the circle centered at r of radius d
is fully contained in the shared region (i.e., R \ S). Thus, by
considering all data objects in R, the total number of
object pairs within distance d can be approximated by
jRj � jSj � ��d2

areaðR\SÞ .
When the target number of object pairs, k, is given with a

query, we can obtain the initial estimation of Dmax by
setting k to the above formula as follows:

k ¼ jRj � jSj � �� d2

areaðR \ SÞ ;

and then by replacing d with eDmax. Therefore, for a given
stopping cardinality k, the initial estimation of Dmax can be
obtained by the following equation.

eDmax ¼
ffiffiffiffiffiffiffiffiffiffiffi
k� �

p
where � ¼ areaðR \ SÞ

�� jRj � jSj

� �
: ð3Þ

Evidently, this equation can be applied only when R and S
overlap. Nonetheless, it is unlikely this will be a serious
limitation because overlapping node pairs always come
before nonoverlapping pairs in the main queueQM . For two
sets of data objects to be joined by distance, the root nodes
of two corresponding R-trees are commonly expected to
overlap each other under most practical circumstances. We
can then make an initial estimation of Dmax from the pair of
root nodes.

4.3.2 Adaptive Correction of Estimated Distance eDmax
The performance of the AM-KDJ and AM-IDJ algo-
rithms can be further improved by adaptively adjusting the
value of eDmax at runtime. Adaptive correction of eDmax can
be done at any point of query processing by estimating a
new eDmax from the number of object pairs k0 ðk0 < kÞ
obtained up to the point and the real distance of the k0th
object pair, Dmaxðk0Þ. Specifically, the new estimate eDmax0
can be computed from (3) as

eDmax0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D 2
maxðk0Þ þ ðkÿ k0Þ�

q
ð4Þ

by arithmetic correction, or as

eDmax0 ¼ Dmaxðk0Þ �
ffiffiffiffiffiffiffiffiffiffi
k=k0

p
ð5Þ

by geometric correction if Dmaxðk0Þ 6¼ 0. In practice, we
propose computing eDmax0 in both ways, and then choose
the minimum if the query processing should be on the
aggressive side. Otherwise, the maximum is chosen as
eDmax0.

Note that the new estimate eDmax0 can sometimes grow

beyond the previous estimate. If this happens, some pairs

whose distances are larger than the previous estimate but

smaller than the new estimate could have already been

pruned and will never be examined in the current

processing stage under the new estimate. Thus, to guarantee

the correctness of the distance join, the algorithm should

initiate a compensation stage, as soon as a pair whose

distance is smaller than the smallest eDmax is dequeued

from the main queue.

4.4 Queue Management

Efficient queue management is one of the key components

of the distance join algorithms proposed in this paper. Each

of the B-KDJ, AM-KDJ, and AM-IDJ algorithms relies

on the use of one or more priority queues for query

processing. In particular, the main queue (QM ) is heavily

used by all of the proposed algorithms, and its performance

impact is significant. In the worst case, the main queue can

grow as large as the product of all objects of two R-tree

indexes. That is, the size of QM is in OðjRobjj � jSobjjÞ, where

jRobjj and jSobjj are the number of all objects in R and S,

respectively. Thus, it is not always feasible to store the main

queue in memory.

It was reported in [16] that a simple memory-based

implementation might slow down query processing se-

verely, due to excessive virtual memory thrashing. A hybrid

memory/disk scheme [16] and a technique based on range

partitioning [10] have been proposed to improve queue

management and to avoid wasted sorting I/O operations.

We adopt a similar scheme for queue management, which

partitions a queue by range based on distances of pairs. A

partition in the shortest distance range is kept in memory as

a heap structure, while the rest of partitions are stored on

disk as merely unsorted piles.

When the in-memory heap becomes full, it is split into

two parts, and then one in the longer distance range is

moved to disk as a new segment. When the in-memory

heap becomes empty, a disk-resident segment in the

shortest distance range or a part of the segment is swapped

in to memory to fill up the in-memory heap. Each of the

split and swap-in operations requires On logn computa-

tional cost for a heap of n elements as well as I/O cost for

reading and writing a segment. Thus, it is important to

minimize the required number of those operations, which

largely depends on the partition boundary values between

the in-memory heap and the first disk-resident segment and

between those consecutive segments. However, as it is

impossible to predict an exact Dmax value for a given k, so is

it difficult to determine optimal distance values as segment

boundaries.
To address this issue, we use (3) to determine the

boundary distance values. Suppose n is the number of
elements that can be stored in an in-memory heap. Then,
the boundary value between the in-memory heap and the
first disk-resident segment is given by

ffiffiffiffiffiffiffiffiffiffiffiffi
n� �p

, and the
boundary value between the first and second segments is
given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� nÞ � �

p
, and so on.

In addition to a main queue, multistage algorithms
AM-KDJ and AM-IDJ use a compensation queue (QC)
in the compensation stage. Unlike the main queue, a
compensation queue does not store any pair of objects.
In other words, a compensation queue can store pairs of
nonobject R-tree nodes only. Thus, the size of QC is in
OðjRnodej � jSnodejÞ, where jRnodej and jSnodej are the number
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of nodes (both internal and leaf nodes) in R and S,
respectively. This is a significantly lower upper-bound than
a main queue has. We also observed from our experiments
that compensation queues were several orders of magni-
tude smaller than main queues. As for a distance queue
used by B-KDJ and AM-KDJ algorithms, its size is
always bounded by a given k value. For these reasons,
under most circumstances, we assume either a compensa-
tion queue or a distance queue fits in memory. If any of
these queues outgrows memory, the same partitioning
technique used for a main queue will be applied.

5 PERFORMANCE EVALUATION

In this section, we evaluate the proposed algorithms
empirically and compare with previous work. In particular,
the proposed B-KDJ, AM-KDJ, and AM-IDJ algorithms
were compared with Hjaltason and Samet’s k-distance and
incremental distance join algorithms (hereinafter denoted as
HS-KDJ and HS-IDJ, respectively) for k-distance join
(KDJ) and incremental distance join (IDJ) queries. We also
include the performance of an R-tree-based spatial join
algorithm [8] combined with a sort operation (denoted as
SJ-SORT) in most of the experiments. For each distance
join query, a spatial join operation was performed with a
real Dmax value to generate the k-nearest pairs. Then, an
external sort operation was performed to return the query
results in an increasing order of distances. Note that
SJ-SORT cannot be applied without knowing a real
Dmax value, and we made a favorable assumption for
SJ-SORT that the real Dmax value was known to
SJ-SORT a priori. Thus, we conjecture that SJ-SORT
followed by an external sort yields the best known lower
bound performance for distance join processing.

5.1 Experimental Settings

Experiments were performed on a Sun Ultrasparc-II work-
station running on Solaris 2.7. This workstation has 256 MBy-
tes of memory and 9 GBytes of disk storage (Seagate
ST39140A) with Ultra 10 EIDE interface. The disk is locally
attached to the workstation and used to store databases,
queues, and any temporary results. We used the direct I/O
feature of Solaris for all the experiments to avoid operating
system’s cache effects, and the average disk access bandwidth
was about 0.5 MBytes/sec for random accesses and about
5 MBytes/sec for sequential accesses.

Data sets. To evaluate distance join algorithms, we used
real-world data sets in TIGER/Line97 from the US Bureau
of Census [20]. The particular data sets we used were
633,461 streets and 189,642 hydrographic objects from the
Arizona state. Throughout the entire set of experiments, the
same page size of 4 KBytes was used for disk I/O and
R*-tree [3] nodes.

Metrics. We measured the performance of various
algorithms based on the following metrics to compare the
algorithms in different aspects such as computational cost
and I/O cost.

1. Number of distance computations: The cost of comput-
ing distances between pairs of nodes (or objects)
constitutes a significant portion of the computational

cost of a distance join operation. Thus, the total
number of distance computations required by a
distance join algorithm provides a direct indication
of its computational performance.

2. Number of queue insertions: The task of managing a
main queue is largely I/O intensive as well as CPU
intensive. Inserting a node pair into the in-memory
portion of the queue is CPU intensive, while inserting
into the disk resident portion is I/O intensive. We
measured the CPU and I/O cost separately for the
two different queue insertions.

3. Number of R-tree node accesses: The number of R-tree
nodes accessed during distance join processing is
another I/O intensive metric. We measured actual
number of nodes fetched from disk with varying
R-tree buffer sizes.

4. Response time: Actual query response times were
measured for overall performance of distance join
algorithms. CPU and I/O costs were considered
separately in measuring the response times.

5.2 Evaluation of k-Distance Joins

In this set of experiments, we varied a stopping cardinality
k from 10 to 100,000 to compare the performance of
HS-KDJ, B-KDJ, and AM-KDJ algorithms. The sizes of
in-memory portion of a main queue and R-tree buffer were
fixed to 512 KBytes each. For the AM-KDJ algorithm, we
used (3) to estimate eDmax values, and we observed a
tendency for eDmax values to be overestimated with respect
to real Dmax values. For example, for k ¼ 100; 000, eDmax
was about 2.3 times larger than a real Dmax.

Fig. 14a shows that both B-KDJ and AM-KDJ reduced
the number of distance computations significantly. The
numbers of distance computations required by the two
algorithms were smaller than those required by the
HS-KDJ algorithm by up to two orders of magnitude.
AM-KDJ was almost identical to SJ-SORT by this metric.
This demonstrates that the optimized plane-sweep method
was very effective in pruning pairs generated by bidirec-
tional expansions. On the other hand, the HS-KDJ
algorithm examines all possible pairs exhaustively in
unidirectional expansions.

In Fig. 14b, both B-KDJ and AM-KDJ achieved
significant reductions in queue insertions for all k values.
AM-KDJ was always better than B-KDJ particularly for
large k values. This result confirms our conjecture that the
optimized plane-sweep method can prevent an explosion of
a main queue that would be caused by bidirectional node
expansions without the optimized plane-sweep.

Fig. 14c shows the number of R-tree nodes fetched from

disk for distance join processing by each algorithm. For

large k values, the proposed B-KDJ and AM-KDJ

algorithms required a far smaller number of R-tree node

accesses than HS-KDJ algorithm. For small k values, on

the other hand, the HS-KDJ algorithm was slightly better

than the other algorithms, due to its more localized node

access patterns for small k. Table 2 compares the number of

R-tree nodes that would be fetched from disk with R-tree

buffer size set to zero. Apparently, the bidirectional node

expansion used by the B-KDJ and AM-KDJ algorithms
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requires much less number of R-tree node accesses than

unidirectional node expansion used by the HS-KDJ

algorithm. It should be noted that the number of R-tree

node accesses for B-KDJ, AM-KDJ, and SJ-SORT

algorithms are all identical in Table 2. This is because these

algorithms use the same bidirectional node expansion and

access the same collection of R-tree nodes, though they may

traverse an R-tree index in different orders.
The total CPU time spent on executing each algorithm is

shown in Fig. 14d. The B-KDJ and AM-KDJ algorithms

consistently outperformed HS-KDJ up to an order of

magnitude. This significant improvement in computational

cost is due mainly to the reduced number of distance

computations. Recall that the unidirectional expansion

requires distance computations for an exhaustive set of

node pairs, while bidirectional node expansion with plane

sweeping requires distance computations only for node

pairs whose axis distances are smaller than qDmax value at

the top of the distance queue. Additionally, the proposed

algorithms are further optimized by techniques for selecting

sweeping axis and direction and by using maximum

distance as a secondary priority for the main queue.
The total I/O time shown in Fig. 14e reflects mostly the

combined effects of queue insertions and R-tree node

accesses in Fig. 14b and Fig. 14c, respectively. Fig. 14f

shows the response time of each algorithm with the CPU

and I/O times combined together. Both the B-KDJ and

AM-KDJ algorithms outperformed the HS-KDJ algo-

rithm by a factor of two or three in response times.

AM-KDJ performed better than B-KDJ for large k values,

demonstrating that AM-KDJ deals with the slow start

problem better than B-KDJ does. For small k values, both

B-KDJ and AM-KDJ were comparable with SJ-SORT.

Even for large k values, the response time of AM-KDJ was

within about 80 percent above that of SJ-SORT, which we

conjecture yields the best known lower bound performance.

5.3 Impact of Optimized Plane-Sweep and
Secondary Priority

We have proposed optimization techniques for B-KDJ in

Section 3. One is for selecting sweeping axis and direction,

which is mainly aimed at reducing the number of distance

computations. The other is using the maximum distance

between node pairs as a secondary priority of the main

queues, which is mainly aimed at reducing the number of

queue insertions. To further analyze the performance

impacts of the optimization techniques, we measured the

performance of B-KDJ.

1. with both optimizations turned on,
2. with the sweeping index only,
3. with the secondary priority only,
4. with both optimizations turned off.
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(f) Response time.
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For the cases with sweeping index turned off, the sweeping
index and direction were fixed to x-axis and forward
direction.

The sweeping index method alone reduced the number
of distance computations by up to 20 percent as shown in
Fig. 15a. The use of the maximum distance as a secondary
priority alone reduced the number of queue insertions by
up to 15 percent as shown in Fig. 15b. The use of the
maximum distance also helped decrease the qDmax value
more quickly and reduce the number of distance computa-
tions slightly as shown in Fig. 15a. However, the synergistic
effect of the two optimization techniques was rather
insignificant. As they improve the performance of distance
join processing largely independently in two different
aspects, we recommend that both the optimization techni-
ques be used together.

5.4 Evaluation of Incremental Distance Joins

As in the previous section, we varied a stopping cardinality
k from 10 to 100,000 to compare the performance of
incremental distance join algorithms HS-IDJ and
AM-IDJ. Like the previous experiments for k-distance
joins, the sizes of in-memory portion of a main queue and
R-tree buffer were fixed to 512 KBytes.

In Figs. 16a and 16b, the AM-IDJ algorithm required 75
to 98 percent less distance computations and queue
insertions than the HS-IDJ algorithm did. For large
k values, as shown in Fig. 16c, the AM-IDJ algorithm
required a much smaller number of disk accesses than the
HS-IDJ algorithm. This is because AM-IDJ accesses
R-tree nodes using bidirectional node expansion, in the
same way as AM-KDJ does. The significant improvement
in these three metrics in turn led to improvement in
response time by an order of magnitude in Fig. 16f.
Specifically, the improvement in CPU time (Fig. 16d) is
attributed to the reduction in distance computations and
queue insertions, and the improvement in I/O time
(Fig. 16e) is attributed to the reduction in queue insertions
and R-tree node accesses. Like AM-KDJ algorithm, (3) in
Section 4.3.1 was used to estimate eDmax values for the
AM-IDJ algorithm.

Now, it is well worthwhile investigating the performance
impact of the stopping cardinality k. Generally, KDJ
algorithms make use of the a priori knowledge of the

k value to minimize the distance computations and the
number of queue insertions. Thus, KDJ algorithms are
expected to be much faster than IDJ algorithms. From our
experiments, however, HS-KDJ required almost as many
distance computations as HS-IDJ did. This indicates that
HS-KDJ does not take advantage of the stopping cardin-
ality enough to achieve performance gain in the distance
computations.

In contrast, AM-KDJ required only about 70 percent
of distance computations that AM-IDJ did (Fig. 16a and
Fig. 14a) and required only 8 percent of queue insertions
that AM-IDJ did (Fig. 16b and Fig. 14b). This is because
KDJ algorithms need not insert a node pair into main
queue if its distance is greater than qDmax value. The
number of queue insertions has direct impact on both
CPU and I/O times. The response time of AM-KDJ
algorithm was about 60 percent less than that of AM-IDJ
algorithm (see Fig. 16f and Fig. 14f).

5.5 Impact of Memory Size

In this set of experiments, we examined the performance
impact of memory constraint on queue management and
R-tree access. The sizes of in-memory portion of a main
queue and R-tree buffer were varied from 64 KBytes to
1,024 KBytes. We measured the response time of HS-KDJ,
B-KDJ, and AM-KDJ algorithms for a fixed stopping
cardinality k ¼ 100; 000.

5.5.1 Buffer Size for Main Queue

No measurement for SJ-SORT algorithm appears in
Figs. 17a through 17c because SJ-SORT algorithm need
not use the main queue for distance join processing. As we
expected, in Figs. 17a and 17b, the cost of queue manage-
ment decreased in terms of both the number of required
write operations and time spent on the write operations.
More noticeable improvement was observed in handling
the overflow and underflow of the in-memory portion of
queue, by split and swap-in operations, respectively. (The
split and swap-in operations are descibed in Section 4.4.) The
time spent on the split and swap-in operations was improved
substantially for all three algorithms in Fig. 17c.

It should be noted that the cost of queue management
can be further reduced by not storing object pairs in the
main queue, as proposed in the recent work by Corral et al.
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[11]. It is straightforward to modify the distance queue to

store k object pairs for the B-KDJ and AM-KDJ

algorithms. The reason we did not use the optimization

was that the optimization cannot be applied to incremental

distance join queries and it was desired to evaluate the

performance of KDJ and IDJ algorithms on the same basis.
While the CPU time remained almost unchanged in

Fig. 17d, the I/O time was improved with more memory for

all the algorithms shown in Fig. 17e. The improved

response time was mainly attributed to the improved

I/O time. The proposed B-KDJ and AM-KDJ algorithms

showed consistently better performance in queue manage-

ment than HS-KDJ all over the examined range of memory

size. This is because B-KDJ and AM-KDJ algorithms

reduced the number of required queue insertions and

queue write operations.

5.5.2 Buffer Size for R-Tree

As shown in Figs. 18a and 18b, a considerable amount of

improvement in R-tree accesses was observed by increasing
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Fig. 17. Impact of queue buffer size. (a) Queue block writes. (b) Queue block write time. (c) Split/swapin time. (d) CPU time. (e) I/O time. (f) Response

time.

Fig. 16. Performance of incremental distance joins. (a) Distance computations. (b) Queue insertions. (c) R-tree node accesses. (d) CPU time. (e) I/O

time. (f) Response time.



the size of buffer for R-tree. For example, by increasing the
buffer size from 64 KBytes to 1,024 KBytes, the R-tree access
time was reduced by 46 percent for the B-KDJ and
AM-KDJ algorithms. Recall that the B-KDJ and
AM-KDJ algorithms, which are based on bidirectional
node expansion, show the same behavior in R-tree access.

Like the queue management in the previous section, the
CPU time spent on R-tree accesses remained almost
unchanged, as shown in Fig. 18c. It was again the I/O time
that affected the response time most in Figs. 18d and 18e.

5.6 Impact of eDmax Estimation on
AM-KDJ Performance

We designed two sets of experiments to characterize the
performance of AM-KDJ algorithm with respect to the
accuracy of estimated eDmax values. In Section 5.6.1, instead
of using (3) to estimate eDmax, we varied the eDmax value
from 0:1�Dmax to 10�Dmax. Recall that Dmax is a real
distance between the kth nearest pair of objects.

5.6.1 Robustness of AM-KDJ

While fixing a stopping cardinality k to 100,000, we varied
the eDmax value from 0:1�Dmax to 10�Dmax. When eDmax
is overestimated (eDmax > Dmax), the compensation stage of
AM-KDJ algorithm is not necessary because all the
k-nearest pairs will be produced in the first (aggressive
pruning) stage. Even when eDmax is overestimated,
AM-KDJ guarantees that eDmax is always smaller than
or equal to qDmax (obtained from a distance queue)
throughout the first stage. Thus, AM-KDJ always requires
no more distance computation and queue insertion opera-
tions than the B-KDJ algorithm does.

On the other hand, if eDmax is underestimated (eDmax <
Dmax), the node pairs in the compensation queue will be
revisited in the compensation stage. Thus, the cost of tree
traversals will increase, but it will be bounded by twice the
cost of the B-KDJ algorithm. Although there is no such a
bound on the cost of queue management, we observed in
most of our experiments that the cost of queue management

was lower than that of the B-KDJ algorithm. This is

because a large number of insertions to a compensation

queue were prevented by aggressive pruning, and the

compensation queue was several orders of magnitude

smaller than the main queue. As discussed in Section 4.1,

for a pair already expanded once in the first stage, only

child pairs not examined in the first stage are paired up in

the compensation stage and thereby wasting no time for

redundant work. The value of qDmax is likely to have

become quite close to a real Dmax value in the compensation

stage. So, the AM-KDJ algorithm usually prunes distant

pairs much more efficiently in the compensation stage than the

B-KDJ algorithm would do in a single stage. Therefore,

AM-KDJ outperforms the k-distance join algorithms

HS-KDJ and B-KDJ, despite the additional cost of

compensation stage.
Fig. 19 shows that, as eDmax approaches to a real Dmax

value, the performance of AM-KDJ improves consistently

in all three metrics. When eDmax increases far beyond the

real Dmax value, the performance of AM-KDJ converges to

that of the B-KDJ algorithm. More importantly, however,

AM-KDJ always outperformed B-KDJ, not to mention

HS-KDJ, with eDmax in a wide spectrum of estimated

value range.
We have not measured the cost of compensation queue

management. A compensation queue contains pairs of

nonobject R-tree nodes. During the first (aggressive prun-

ing) stage of the AM-KDJ algorithm, the number of

pruned pairs is far larger than the number of nonobject

pairs inserted into a compensation queue. In most of our

experiments, the size of a compensation queue was less than

0.5 percent of the size of a main queue. Thus, the additional

cost required for the compensation queue was almost

negligible. This is one of the reasons why the AM-KDJ

algorithm always outperformed B-KDJ, which does not

need a compensation queue.
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Fig. 18. Impact of R-tree buffer size. (a) R-tree node accesses. (b) R-tree node access time. (c) CPU time. (d) I/O time. (e) Response time.



5.7 Stepwise Incremental Execution of AM-IDJ

Incremental distance join algorithms do not require a preset
stopping cardinality k. Thus, in this set of experiments, we
simulated a situation where users repeatedly requested a
set of 10,000 nearest pairs at a time until a total of 100,000
nearest pairs were generated. Incremental algorithms
HS-IDJ and AM-IDJ each were executed once in a single
experiment run, until a total of 100,000 nearest pairs were
generated. The sizes of in-memory portion of a main queue
and R-tree buffer were fixed to 512 KBytes both for HS-IDJ
and AM-IDJ.

For SJ-SORT, which is not an incremental algorithm,
we restarted its processing each time i� 10; 000 nearest
pairs were generated for i ð1 � i � 9Þ. Thus, the perfor-
mance measurements of SJ-SORT presented in Fig. 20 are
cumulative. For example, the response time of SJ-SORT
for k ¼ 20; 000 includes the times spent on executing
SJ-SORT twice, once for k ¼ 10; 000 and another for
k ¼ 20; 000. For each run of SJ-SORT, we used a real
Dmax value for each of different stopping cardinalities.

In Fig. 20, we measured the response time of the
AM-IDJ algorithm in two different ways: 1) with eDmax
values estimated by (3) and 2) with real Dmax values
provided for 10 different k values. When estimated eDmax
values were provided, AM-IDJ needed compensation
processing only after generating 30,000 pairs and 90,000
pairs, due to overestimated eDmax values. In the second case
(denoted by AM-IDJ (Dmax) in Fig. 20), a real Dmax value
was provided for each k value from 10,000 through 100,000,
to simulate a situation where the next set of 10,000 pairs of
objects were repeatedly requested by a user. Consequently,
AM-IDJ was forced to initiate a compensation stage, each
time the next set was requested. This overhead slowed
down the processing due mainly to redundant R-tree node
accesses. Overall, AM-IDJ showed a fairly consistent
performance over varying eDmax estimates, as AM-KDJ
did in Section 5.6. For all the k values, AM-IDJ with
estimated eDmax improved the response time by a factor of
two to four, when compared with HS-IDJ.

6 CONCLUSIONS

We have developed new distance join algorithms for spatial
databases. The proposed algorithms provide significant
performance improvement over previous work. The plane-
sweep technique optimized by novel strategies for selecting
a sweeping axis and direction minimizes the computational

overhead incurred by bidirectional node expansions. The
node expansions are further optimized by using maximum
distance for breaking tied pairs. We have shown that this
optimized plane-sweep technique alone improves proces-
sing of a k-distance join query considerably.

The adaptive multistage algorithms employ aggressive
pruning and compensation methods to further optimize the
distance join processing. These algorithms address a slow
start problem by using estimated maximum distances as
cutoff values for pruning distant pairs. Our experimental
study shows that the proposed algorithms outperformed
previous work significantly and consistently for all the
stopping cardinalities over a wide spectrum of estimated
maximum distances. Ample evidence was observed that the
adaptive algorithm yielded significant improvement in
query processing time regardless of the techniques used
for maximum distance estimations. For a relatively small
stopping cardinality, the proposed algorithms achieved up
to an order of magnitude improvement over previous work.
Assuming data objects are uniformly distributed, we have
developed strategies to choose an initial estimate and to
correct the estimate adaptively during the query processing.

When the stopping cardinality of a distance join query is
unknown (as in online query processing environments or a
complex query that contains a distance join as a subquery),
the adaptive multistage algorithms process the query in a
stepwise manner so that the query results can be returned
incrementally.
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