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ABSTRACT
Outlier detection is critical in enterprises. Due to the existence of
many outlier detection techniques which often return different re-
sults for the same data set, the users have to address the problem
of determining which among these techniques is the best suited for
their task and tune its parameters. This is particularly challenging
in the unsupervised setting, where no labels are available for cross-
validation needed for such method and parameter optimization. In
this work, we propose AutoOD which uses the existing unsupervised
detection techniques to automatically produce high quality outliers
without any human tuning. AutoOD’s fundamentally new strategy
unifies the merits of unsupervised outlier detection and supervised
classification within one integrated solution. It automatically tests
a diverse set of unsupervised outlier techniques on a target data set,
extracts useful signals from their combined detection results to reli-
ably capture key differences between outliers and inliers. It then uses
these signals to produce a “custom anomaly classifier” to classify
anomalies, with its accuracy comparable to supervised outlier clas-
sification models trained with ground truth labels – without having
access to the much needed labels. On a diverse set of benchmark
outlier detection datasets, AutoOD consistently outperforms the best
unsupervised outlier detector selected from hundreds of detectors.
It also outperforms other tuning-free approaches we adapted to this
unsupervised outlier setting from 12 to 97 points (out of 100) in the
F-1 score.

1 INTRODUCTION
As data volumes continue to grow with the rise of social networks,
digital currency, smart phones, connected vehicles, and other devices,
there is an increasing need for techniques to support the discovery
of outliers in data. Outliers correspond to rare items, events or obser-
vations which differ significantly from the majority of the data [3]
and may indicate a problem, such as fraud, malfunctioning devices,
or future catastrophic failures. With financial fraud causing a multi-
billion dollar loss to global economy each year [7] and Internet of
Things (IoT) applications from fleet management, security surveil-
lance to inventory management predicted by Forrester to become
a many trillion dollar market in the next 15 years [1], the need for
effective outlier detection technology is abundant.

This has led to a significant surge in developing outlier detection
techniques [3] over the past decade. They include fitting data to a
statistical distribution and highlighting values far from the mean
or median [10, 11], clustering data and identifying values outside
common clusters [33], and discovering objects far from their neigh-
bors [18, 67]. While previous research has resulted in a plethora of
algorithms for detecting particular types of outliers, there are still
challenging problems that hinder these algorithms from being useful
in real applications by practitioners.
State-of-the-art and Its Limitations. One critical challenge is how
to choose the most effective solution from this stew of available tech-
niques and tune their parameters [3]. Users face several problems:

first, no single algorithm adequately captures outliers across diverse
data sets and problem domains. Thus customized algorithms have
been proposed targeting different settings [3]. An outlier detection
method that works well on one data set might yield poor results
on another data set. Selecting a method appropriate to the given
task is challenging for domain scientists, requiring not only thor-
ough domain understanding, familiarity with the data at hand and
knowledge about the most critical differences between outliers and
inliers, but also a good understanding of the wealth of available out-
lier detection methods and their characteristics. This complexity is
compounded by the fact that often the data characteristics for which
certain algorithms work well are not known or properly documented.

Second, choosing the best outlier detection method is further
complicated by the fact that many such methods are governed by a
number of parameters. Without appropriately tuned parameter set-
tings, detection algorithms tend to be ineffective at identifying out-
liers [21]. Although automatic parameter tuning methods have been
proposed in Automated Machine Learning (AutoML) for supervised
classification [25, 32, 61], these techniques are not adequate for solv-
ing the parameter tuning problem in the context of outlier detection.
This is because outliers are rare events, making it hard to manually
acquire a sufficient number of high quality outlier examples (labels)
required for supervised learning. This is one reason why outlier de-
tection techniques tend to be unsupervised [3]. Unfortunately, labels
are required by the state-of-the-art AutoML methods [25, 32, 61]
for automatic cross validation. This renders AutoML ineffective at
tuning these unsupervised outlier detection methods.
Proposed Approach. To solve the above problems, we propose
a automatic outlier detection approach (AutoOD). AutoOD is not
a new outlier detection algorithm – instead it is a tuning-free ap-
proach that aims to best use existing outlier detection algorithms
yet without requiring human labeling input. Our key intuition is that
selecting one model from many alternate unsupervised anomaly de-
tection models may not always work well. Instead, AutoOD targets
combining the best of them.

The AutoOD Strategy. AutoOD uses a fundamentally new strat-
egy that unifies the merits of unsupervised outlier detection tech-
niques and supervised classification models. Unsupervised outlier
detection does not require labeled data, but the accuracy of unsu-
pervised techniques is often low due to the lack of supervision with
domain knowledge [16, 19]. Compared to unsupervised techniques,
supervised classification tends to achieve better accuracy, as long as
a sufficient number of high quality labels are available [3].

Instead of first carefully selecting an appropriate outlier detection
method for a given task and then tuning its parameters, AutoOD
turns the unsupervised problem into a supervised problem. Specifi-
cally, it uses the results from many unsupervised outlier detectors in
combination to automatically infer high quality labels by discovering
objects from the input data that can reliably be detected as an outlier
or an inlier. Using these automatically generated labels, AutoOD
then trains a supervised classification model that makes inference on
the remaining objects to produce the final outlier detection results.
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In this way, AutoOD leverages supervised classification to achieve
high accuracy in outlier detection, while no longer having to rely on
domain experts to manually supply labels.

Methods to Automatically Produce Labels. The number and
quality of the automatically produced labels are critical to AutoOD’s
effectiveness. To this end, we design two complementary methods,
AutoOD-Augment and AutoOD-Clean.

AutoOD-Augment starts with discovering a small but reliable set
of labels based on the strong consensus of all unsupervised outlier
detectors. Next, leveraging the outlierness scores these detectors
assign to each data object, AutoOD-Augment forms a feature space
where each attribute represents one detector. It uses the set of re-
liable labels acquired so far and the outlierness score features to
learn a machine learning model that predicts the performance of
each detector for the data at hand. Leveraging this model, AutoOD-
Augment iteratively prunes ‘bad’ detectors. AutoOD-Augment then
continues to produce more labels based on the agreement among the
predictions produced by the remaining ‘good’ outlier detectors. This
way, the labels set is progressively augmented.

In contrast, AutoOD-Clean starts with a large but noisy set of
labels and uses it to train a neural network. This set of labels could
be formed by, for example, ensembling the results of all detectors.
Leveraging the observation that the training loss on “correctly la-
beled” objects tends to be larger than that on any “mislabeled” ob-
jects in early epochs of training a deep neural network [62], AutoOD-
Clean iteratively purifies the training data through its learning pro-
cess, resulting in the removal of the objects with large early loss
from the training data. As proven in Sec. 5.2, a deep neural network
enhanced with this proposed self-cleaning strategy is guaranteed
to converge. Further, our experimental study demonstrates that the
resulting classification model learned by AutoOD-Clean shows high
accuracy. AutoOD-Clean complements AutoOD-Augment, espe-
cially when it is hard to get initial reliable labels.
Experimental Results. We demonstrate the effectiveness of Au-
toOD using a variety of benchmark outlier detection data sets [16,
60]. In particular, as we show in Sec. 6.2, AutoOD consistently de-
tects outliers with an accuracy higher than the best outlier detector
among hundreds. Of note, AutoOD is able to do this without requir-
ing any manual tuning nor human input in terms of pre-determined
labels. Further, AutoOD significantly outperforms ensemble-based
methods [55, 58] and other tuning-free approaches by 12 to 97 points
(out of 100) in the F-1 score.
Contributions. In summary, key contributions of this work include:

• We propose AutoOD that uses a set of unsupervised outlier
detectors to automatically produce high quality outliers, requiring
zero human input nor ground-truth labels.

• AutoOD unifies the merits of unsupervised outlier detection and
supervised classification, achieving a high accuracy in detecting
outliers, while requiring zero human input nor ground-truth labels.

• We propose two complementary solutions, AutoOD-Augment
and AutoOD-Clean, to realize the AutoOD framework, making Au-
toOD highly effective and robust in a variety of scenarios. Our theo-
retical analysis show that AutoOD-Augment and AutoOD-Clean are
guaranteed to converge to a set of high quality labels.

• Our experiments on benchmark outlier detection datasets show
that AutoOD consistently outperforms the best outlier detector

among all candidate detectors. In fact, it achieves an accuracy com-
parable to supervised outlier classifiers trained with ground truth
labels – without having the access and thus benefit of such ground
truth knowledge!

2 PRELIMINARIES
Below, we briefly overview popular outlier detection techniques [3]
including statistical-based outlier detection [3], distance-based out-
lier detection [35, 54], density-based outlier detection [15, 48], and
Isolation Forest [44]. AutoOD supports these techniques as build-in
libraries, although other techniques could also simply be plugged in.
Statistical-based Outlier Detection. Statistical-based methods
detect outliers by discovering extreme values. In particular, the Ma-
halanobis method [3] models the entire dataset to be normally dis-
tributed around its mean in the form of a multivariate Gaussian distri-
bution. Let 𝜇 be the 𝑑-dimensional mean vector of a 𝑑-dimensional
dataset, and Σ be its 𝑑 ×𝑑 covariance matrix. In this case, the (𝑖, 𝑗)th
entry of the covariance matrix is equal to the covariance between
the dimensions 𝑖 and 𝑗 . Then the mahalanobis distance from a 𝑑-
dimensional data object 𝑋 to this distribution can be defined as:

𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠 (𝑋, 𝜇, Σ) =
√︃
(𝑋 − 𝜇)Σ−1 (𝑋 − 𝜇)𝑇 (1)

The Mahalanobis distance is used as outlier score. Meaning, the
larger the Mahalanobis distance is, the more the object deviates from
the data set distribution and thus more likely is an outlier.
Distance-based Outlier Detection. Distance-based outlier detec-
tion computes outlier scores on the basis of nearest neighbor dis-
tances. Among many variations [9, 36, 54], the 𝑘NN outlier [54]
is very popular. Let 𝐷𝑘 (𝑝) denote the distance of object 𝑝 from its
𝑘-th nearest neighbor. The 𝑘NN outlier ranks objects based on their
𝐷𝑘 (𝑝) distance. The top 𝑛 objects in this ranking are then considered
to be outliers. These objects have fewer points close to them and are
thus intuitively stronger outliers.
Density-based Outlier Detection. Density-based approaches con-
sider ratios between the local density around an object and the local
density around its neighboring objects. These approaches introduce
the notion of local outliers as opposed to the global outliers discov-
ered by distance-based outlier techniques. The concept of a local
outlier is important since in many applications, different portions of
a dataset can exhibit very different characteristics. It is thus meaning-
ful to decide on the outlying possibility of an object based on other
objects in its neighborhood. The most popular density-based outlier
approach [15], called LOF, is to assign a local outlier factor (LOF)
to each object of the dataset denoting its degree of outlierness. In
general, LOF corresponds to the average of the ratio of the local den-
sity of an object p and those of p’s k-nearest-neighbors. Intuitively,
p’s local outlier factor will be very high if its local density is much
lower than those of its neighbors.
Isolation Forest. An isolation forest is an ensemble of a set of isola-
tion trees [44]. In an isolation tree, the data is recursively partitioned
with axis-parallel cuts at randomly chosen partition objects within
randomly selected attributes. The aim is to isolate the instances into
nodes with fewer and fewer instances until the objects are isolated
into singleton nodes containing one instance only. In such cases, the
tree branches containing outliers are noticeably less deep, because
these objects are located in sparse regions. Here thus the distance of
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the leaf to the root is used as the outlier score. The final outlier score
then is computed by averaging the path lengths of the objects in the
different trees of the isolation forest.

3 OVERVIEW OF THE AUTOOD
FRAMEWORK

In this section, we introduce the overall design of AutoOD.

Unsupervised detectors
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Figure 1: AutoOD Framework

3.1 Fundamentals Underlying AutoOD
AutoOD Strategy. AutoOD uses a fundamentally new strategy to
solve the method selection and parameter tuning problem in unsu-
pervised outlier detection. This strategy unifies the merits of un-
supervised outlier detection and supervised classification. Namely,
unsupervised methods do not rely on a human expert to supply la-
bels about ground truth anomalies – which often are hard to come
by. However, the accuracy of unsupervised outlier detection is of-
ten low [16] due to the lack of human supervision. On the other
hand, supervised classification techniques are able to achieve higher
accuracy by training a binary classifier that classifies the objects
into outliers or inliers. However, they rely on the availability of a
sufficient number of high quality labels for training [21].

Instead of selecting an appropriate outlier detection method and
then tuning its parameters to get good results, AutoOD uses a large
set of diverse unsupervised outlier detectors as labeling sources to
automatically produce high quality labels, where an outlier detector
corresponds to one specific unsupervised outlier detection method
instantiated with a particular parameter setting. We then use these
automatically produced labels to train a classification model to finally
classify each object as being either an outlier or an inlier. As we
will demonstrate in Sec. 6.2, this allows AutoOD to achieve high
accuracy in detecting outliers, without having to rely on human
experts to supply high-quality labels. AutoOD thus captures the
benefits of both unsupervised and supervised outlier detection.
AutoOD Intuition. Without any manually supplied labels indicating
ground truth, it appears extremely difficult to automatically discover
the best unsupervised outlier detector among many alternatives. Even
if it were possible to identify the best one, it would not be guaranteed
to detect outliers with high accuracy. In fact, among all detectors
there is at times no one clear winner that dominates all the other de-
tectors. Given a diverse set of unsupervised detectors, each detector
might discover some anomalies which other detectors would miss.

However, we observe that there typically tend to be some objects
in the data that are clear outliers and inliers. Clear outliers, for
example, often correspond to the objects that are well isolated from
other objects, while clear inliers often correspond to objects residing

deeply inside dense data clusters. Our intuition is that it is to be much
easier to automatically identify such clear outliers or clear inliers
compared to identifying the best overall detector method itself. Using
these objects as reliable labels that characterize key differences
between outliers and inliers, AutoOD thereby can fully explore the
generalization ability of supervised machine learning [30] to learn
a classification boundary that effectively infers the status of the
remaining unsure objects.

3.2 Components of the AutoOD Framework
Fig. 1 depicts the overall AutoOD Framework. AutoOD is composed
of three key components, including unsupervised outlier detection,
automatic reliable object discovery, and outlier classification.
(1) Unsupervised Outlier Detection.

Given an input data set, AutoOD first uses a set of unsupervised
outlier detectors to detect outliers. Each detector corresponds to one
outlier detection method in the built-in AutoOD library with a par-
ticular configuration of parameter values instantiated. For simplicity
and ease of use, for each detection method, AutoOD uniformly picks
some parameter configurations from a reasonable parameter range
recommended by [16].
(2) Automatic Reliable Object Discovery. Next, based on these
unsupervised detection results, AutoOD divides the input data into
two subsets, “reliable objects” and “unsure objects”. The reliable
objects are those which AutoOD is confident are clearly inliers or
outliers based on the detection results produced by the detectors.
(3) Outlier Classification. Finally, the automatically discovered
reliable objects are used as training data for a binary outlier classifi-
cation model. This model then produces predictions for the “unsure”
objects whose labels remain to be unknown. This way, eventually
our AutoOD assigns labels to all objects.
AutoOD-Augment and AutoOD-Clean. Clearly, the effectiveness
of AutoOD relies on the number and quality of the reliable ob-
jects discovered in the second step and used as labeled training
data thereafter. In this work, we design two approaches to discover
these reliable objects that complement each other. First, we propose
an augmentation-based method, called AutoOD-Augment (Sec. 4).
AutoOD-Augment starts by automatically discovering a small but re-
liable set of objects to label and keeps augmenting this set iteratively.
Second, we propose a cleaning-based method, called AutoOD-Clean
(Sec. 5). As opposed to AutoOD-Augment, AutoOD-Clean starts
with a large set of noisy labels and keeps cleaning this set into an
increasingly reliable set. In the next two sections, we introduce the
two approaches in detail.

4 AUGMENTATION-BASED RELIABLE
OBJECT DISCOVERY

AutoOD-Augment starts with discovering a small set of reliable
objects and then iteratively augments this set until no new reliable
objects can be found.

4.1 The Overview of AutoOD-Augment
Next, we overview the AutoOD-Augment approach that includes
three key components, namely initial reliable object discovery,
learning-based poor detector pruning, and reliable object set update.
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(1) Initial Reliable Object Discovery. AutoOD-Augment iden-
tifies an initial label set of stable outliers/inliers using the strategy
described below. In AutoOD, an object is considered to be reliably-
decidable about its label status, if all unsupervised outlier detectors
agree on its (outlier/inlier) label status. We call these the stable ob-
jects. The stable objects typically correspond to the clear inliers and
outliers in the data. The intuition is that although different outlier
detection methods use distinct techniques to detect outliers, they
are based on the same principle. That is, an object is an outlier if it
deviates significantly from the other observations [31]. Therefore,
they all tend to be good at capturing the clear inliers that are deeply
resided inside of some big data clusters and the clear outliers that
are far way from any other objects.

(2) Learning-based Poor Detector Pruning. Second, treating
the stable outliers/inliers as reliable objects and hence ground truth
labels, AutoOD trains a machine learning model to estimate the
performance of the unsupervised detectors. Progressively pruning
the bad detectors enables AutoOD to collect more and more stable
inliers and outliers, thus gradually discovering more reliable objects.
Note although AutoOD estimates the performance of each detector,
the ultimate goal is not to find the best detector, but instead it is to
automatically discover more reliable objects.

(3) Reliable Object Set Update. AutoOD-Augment leverages
the concept of multi-view analysis [26] to update the reliable objects.
That is, AutoOD learns multiple distinct outlier classification models
that are trained on the same set of labels but that use different sets of
features. Features we can leverage here include not only the attributes
of the data itself, but also the intermediate results produced by the
outlier detectors. The intuition is that if the classification models
learned from different views of the data agree with each other on
the prediction of some objects, potentially these objects are reliable
objects. On the other hand, the objects on which the classification
models have conflicting predictions will be removed from the set of
reliable objects to purify the automatically produced labels.

Algorithm 1 AutoOD-Augment
1: function AUTOODAUGMENT(DETECTORS, SCORES, X)
2: prevIds = []
3: Ids, D𝑟 = INITRELIABLEOBJ(Scores)
4: counter = 0
5: while True do
6: Scores = PRUNEDETECTOR(Detectors, Scores, Ids, D𝑟 )
7: Ids, D𝑟 = UPDATERELIABLEOBJ(Scores, Ids, D𝑟 )
8: if prevIds == Ids then
9: break

10: prevIds = Ids
11: return Ids, D𝑟

Alg. 1 illustrate the overall process of AutoOD-Augment. First, 𝑛
different outlier detectors d1, d2, . . . , dn generate a list of outlierness
scores s1, s2, . . . , sn for each object 𝑝𝑖 , respectively. Based on these
outlierness scores, AutoOD-Augment puts together its initial set of
reliable objects D𝑟 (Line 3, Alg. 1). Our learning-based detector
pruning strategy then is applied to discover and prune the poor
detectors (Line 6, Alg. 1). Based on the remaining outlier detectors,
AutoOD-Augment leverages the multi-view outlier classification to
update reliable objectsD𝑟 (Line 7, Alg. 1). The newD𝑟 is used in the
next iteration as training data to further prune the poor detectors. In

this process, D𝑟 gets larger and more accurate. AuotoOD-Augment
terminates when D𝑟 does not change any more (Lines 8–9, Alg. 1).

Next, we introduce the three key components of AutoOD-
Augment in more detail, namely initial reliable object discovery,
learning-based poor detector pruning, and reliable object set update.

4.2 Initial Reliable Object Discovery
AutoOD-Augment starts by identifying stable inliers and stable
outliers as initial set of what we call “reliable objects”. Because
outliers typically correspond to only a very small fraction of the data
set, in some cases AutoOD may not be able to identify stable outliers
in this initial set – especially when handling small datasets. To solve
this issue, we relax the strict requirement of stable outliers when
necessary. The first relaxation is if all detectors that use the same
detection method𝑀𝑖 but different parameter settings pt1 . . . ptm mark
an object as outlier, then we will consider this object to be a stable
outlier. For example, suppose AutoOD uses two outlier detection
methods LOF [15] and Isolation Forest [44], and there is no stable
outlier based on the strict stable outlier requirement. In this case,
an object will be considered as a stable outlier if all detectors using
LOF believe it is an outlier. While this or other relaxations we may
explore in the future may introduce errors into the set of reliable
objects, our AutoOD-Augment method is designed to fix these errors
using an iterative learning process described in Sec. 4.4.
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Figure 2: AutoOD-Augment: Prune Poor Detectors

4.3 Learning-based Poor Detector Pruning
One principle of AutoOD-Augment is to tackle the problem of
pruning poor detectors using machine learning, more specifically
logistic regression. In this work, leveraging the unique properties of
the logistic regression model in conjunction of unsupervised outlier
detection AutoOD-Augment effectively discover poor detectors with
a theoretical guarantee.

Logistic regression (LR) [34] is a classical binary classification
model that predicts the probabilities of possible outputs. Consider
a single input observation 𝑥 , represented by a vector of features
[𝑥1, 𝑥2, . . . , 𝑥𝑛]. The classifier consuming 𝑥 then outputs outcome 𝑦,
with 𝑦 ∈ {0, 1} with 1 meaning the observation is a member of the
class 𝐶 and 0 the observation is not a member of the class 𝐶. We
want to know the probability 𝑃 (𝑦 = 1|𝑥) that the observation 𝑥 is
a member of the class C. In the outlier detection case, 𝑃 (𝑦 = 1|𝑥)
represents the probability that 𝑥 is an outlier, while 𝑃 (𝑦 = 0|𝑥)
represents the probability that 𝑥 is an inlier.

Given a training set of objects with class labels, logistic regres-
sion (LR) solves this classification problem by learning a vector of
weights 𝑤 = [𝑤1,𝑤2, . . . ,𝑤𝑛] and a bias term. Each weight 𝑤𝑖 is
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a real number, and is associated with one of the input features 𝑥𝑖 .
Formally, the LR model is defined as:

𝑙𝑜𝑔
𝑃 (𝑦 = 1|𝑥)

1 − 𝑃 (𝑦 = 1|𝑥) = 𝑤 · 𝑥 + 𝑏 (2)

where 𝑤 denotes the weight vector and 𝑏 the bias term. Solving for
𝑃 (𝑦 = 1|𝑥), this gives:

𝑃 (𝑦 = 1|𝑥 ;𝑏,𝑤) = 𝑒𝑤 ·𝑥+𝑏

1 + 𝑒𝑤 ·𝑥+𝑏 =
1

1 + 𝑒−(𝑤 ·𝑥+𝑏) (3)

The weights and bias of the LR model are estimated from the
training data. After we have learned the weights through the training
process, the probabilities for each class can be computed by Eq. 3.
If P(y=1|x; b,w) ≫ 0.5, the object is classified as an outlier. Alter-
natively, if P(y=1|x; b,w) is close to 0, the object is an inlier. On
the other hand, if P(y=1|x; b,w) is around 0.5, the LR model is not
certain enough about the status of the given object.

Outlier Detector Pruning With Logistic Regression. The out-
lier detector 𝑑𝑖 produces an outlierness score 𝑠𝑖, 𝑗 for each object 𝑝 𝑗
in the dataset. As a real number, the larger the 𝑠𝑖, 𝑗 , the more possible
that 𝑑𝑖 believes 𝑝 𝑗 is an outlier. This outlierness score can be treated
as an additional derived feature 𝑥 ′

𝑖
of object 𝑝 produced by detector

𝑑𝑖 . Thus, in total, 𝑛 outlier detectors will produce 𝑛 such derived
features {𝑥 ′1, 𝑥

′
2, ..., 𝑥

′
𝑛}. As depicted in Fig. 2, the outlier scores 𝑠𝑖, 𝑗

produced by 𝑛 detectors for𝑚 objects form a 𝑛 ×𝑚 matrix. Element
𝑠𝑖, 𝑗 represents the outlierness score that detector 𝑑𝑖 assigns to object
𝑝 𝑗 . Correspondingly, the 𝑖th row corresponds to feature 𝑥 ′

𝑖
produced

by detector 𝑑𝑖 across all objects, while the 𝑗 th column corresponds
to features produced for object 𝑝 𝑗 by all the detectors.

As a preprocessing step, AutoOD normalizes the outlierness
scores produced by different detectors into the same range to allow
for ease of comparison. In the implementation, AutoOD uses Ro-
bustScaler in scikit-learn [50] that is known to be robust to outliers.
AutoOD then uses these derived features {𝑥 ′1, 𝑥

′
2, ..., 𝑥

′
𝑛} produced

by the 𝑛 detectors and the set of stable labels produced in the first
step to train an LR model.

As discussed above, LR assigns a weight 𝑤𝑖 to each feature 𝑥 ′
𝑖

corresponding to one detector 𝑑𝑖 . Intuitively, the weight 𝑤𝑖 repre-
sents how important that input feature 𝑥 ′

𝑖
is to the classification

decision [30]. It can be positive or negative which would mean that
the feature is (or is not) associated with the outlier class, respectively.
Leveraging this insight, we define the pruning rule in Def. 4.1 that
prunes detectors based on the importance of their evidence to the
LR model’s classification decision.

DEFINITION 4.1. Pruning Rule. Given the weights WT =
{w1,w2, ...,wn} corresponding to features {𝑥 ′1, 𝑥

′
2, ..., 𝑥

′
𝑛} produced

by detectors {𝑑1, 𝑑2, ..., 𝑑𝑛}, AutoOD prunes detector 𝑑𝑖 if:
(1) weight wi < 0; or
(2) wi < mean(WT) − std (WT) when ∀𝑤𝑖 ∈WT, 𝑤𝑖 > 0.

By the pruning rule, if there are negative weights, AutoOD
prunes the corresponding detectors immediately. Otherwise, Au-
toOD prunes the detectors whose weights are at least one standard
deviation smaller than the average weight over all detectors. Our
experiments in Sec. 6.6 confirm that this is effective in pruning the
poor detectors.
Theoretical Guarantee. Next, we formally show in Lemma 4.1 that
the detectors discarded by the pruning rule are guaranteed to not

perform better than the remaining detectors under the comparison
criteria defined in Def. 4.2.

DEFINITION 4.2. Comparison Criteria. Let O and I represent
an outlier set and an inlier set, respectively. We say detector 𝑑𝑖 is
better than detector 𝑑 𝑗 , if and only if:∑︁

𝑝𝑘 ∈O
𝑠𝑖,𝑘 >

∑︁
𝑝𝑘 ∈O

𝑠 𝑗,𝑘 𝑎𝑛𝑑
∑︁
𝑝𝑘 ∈I

𝑠𝑖,𝑘 <
∑︁
𝑝𝑘 ∈I

𝑠 𝑗,𝑘 (4)

where 𝑠𝑖,𝑘 corresponds to the outlierness score which detector 𝑑𝑖
assigns to object 𝑝𝑘 .

Intuitively, given a set of outliers and inliers, we say detector 𝑑𝑖
is better than detector 𝑑 𝑗 , if compared to 𝑑 𝑗 , 𝑑𝑖 in total assigns larger
outlierness scores to outliers and smaller outlierness scores to inliers.

Next, we prove Lemma 4.1.

LEMMA 4.1. If detector 𝑑𝑖 is better than 𝑑 𝑗 by the comparison
criteria in Def. 4.1, then wi > wj .

PROOF. Focusing on 𝑤𝑖 and 𝑤 𝑗 , we re-write the objective func-
tion of logistic regression as:

max
∑︁
𝑝𝑘 ∈O

(𝑤𝑖 · 𝑠𝑖,𝑘 +𝑤 𝑗 · 𝑠 𝑗,𝑘 ) −
∑︁
𝑝𝑘 ∈I

(𝑤𝑖 · 𝑠𝑖,𝑘 +𝑤 𝑗 · 𝑠 𝑗,𝑘 ) (5)

We use 𝐶𝑖 to denote
∑
𝑝𝑘 ∈O 𝑠𝑖,𝑘 − ∑

𝑝𝑘 ∈I 𝑠𝑖,𝑘 and 𝐶 𝑗 to denote∑
𝑝𝑘 ∈O 𝑠 𝑗,𝑘 −∑

𝑝𝑘 ∈I 𝑠 𝑗,𝑘 . By Equation 4, if 𝑑𝑖 is better than 𝑑 𝑗 , we
have 𝐶𝑖 > 𝐶 𝑗 . Accordingly, we re-write the objective as:

max𝐶𝑖𝑤𝑖 +𝐶 𝑗𝑤 𝑗 , 𝑠 .𝑡 .𝐶𝑖 > 𝐶 𝑗 (6)

If we set | |𝑤 | |22 to be Const, then using the Lagrangian multiplier
method, we have:

𝑓 (𝑤) = 𝐶𝑖𝑤𝑖 +𝐶 𝑗𝑤 𝑗 + 𝜆(𝑤2
𝑢1 +𝑤

2
𝑢2 ) (7)

Then setting the derivative of 𝑓 (𝑤) w.r.t. 𝑤𝑖 and 𝑤 𝑗 to zero will
yield:

𝑤𝑖 = −𝐶𝑖
2𝜆

, 𝑤 𝑗 = −
𝐶 𝑗

2𝜆
, 𝜆 < 0 =⇒ 𝑤𝑖 > 𝑤 𝑗 (8)

This concludes the proof. □

By Lemma 4.1, weight 𝑤𝑖 represents the relative performance of
detector 𝑑𝑖 . This in turn justifies AutoOD’s pruning rule.

Algorithm 2 Update Reliable Object Set
1: highConfThr = t, lowConfThr = 1 - t
2: function UPDATERELIABLEOBJECT(Scores, trainIds, D𝑟 , LRModel)
3: DataFtModel = Train(X[trainIds], D𝑟 )
4: DataFtPredict = DataFtModel(X)
5: OutlierScorePredict = OutlierScoreModel(Scores)
6: highConfIn = Intersect(DataFtPredict < lowConfThres, OutlierScorePredict <

lowConfThr)
7: highConfOut = Intersect(DataFtPredict > highConfThres, OutlierScorePredict

> highConfThr)
8: disagrees = (DataFtPredict > 0.5) != (OutlierScorePredict > 0.5)
9: stableIn, stableOut = GETSTABLE(Scores)

10: inliers = Union(stableIn, highConfIn)
11: outliers = Union(stableOut, highConfOut)
12: inliers = Setdiff (inliers, disagrees)
13: outliers = Setdiff (outliers, disagrees)
14: trainIds = [inliers, outliers]
15: D𝑟 = [0 {len(inliers)}, 1 {len(outliers)}]
16: return trainIds, D𝑟
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4.4 Reliable Object Set Update
In Alg. 2, we leverage the idea of multi-view outlier classification
to update the set of reliable objects. For this, beyond training the
logistic regression (LR) model on the outlierness score features (the
outlier score model), AutoOD-Augment trains an additional outlier
classifier using only the raw features (attributes) of the stable data
set (Line 3), called the data feature model.

At testing phase, this classifier takes an object as input, and based
on the similarity of its attributes to objects in the stable data set,
emits a confidence that the object is an outlier (or, not an outlier). In
this work, while any binary classification model could be plugged in,
in our implementation we utilize a Support Vector Machine (SVM)
model as our classifier. This is because it does not require careful
hyper-parameter tuning and can handle high dimensional data.

The outlier score model and data feature model are used to infer
two different sets of probabilities of the outlier class for all objects
in the entire input dataset (Lines 4,5). Thereafter, AutoOD-Augment
iterates over the process below using the prediction results of the
outlier score and data feature models as well as the remaining high-
quality detectors to discover the reliable objects. The intuition here
is that the two models and the outlier detectors produce predictions
for each object from different views of the data. If they are consistent
on the prediction of the outlier status for one object, the label of this
object is considered to be reliable.

In the update process, AutoOD-Augment first discovers the new
stable outliers/inliers (Line 9). After pruning some poor detectors,
the numbers of stable inliers and outliers naturally increase. Then
from the prediction results of the two classification models, AutoOD-
Augment identifies the confident inliers (Line 6) and outliers (Line
7). An object is a confident inlier or outlier if both classification
models are very confident about their prediction of its status.

DEFINITION 4.3. Confident Inliers/Outliers. Given an object 𝑝
and some threshold 𝑡 (0 < t < 1), if the classification model trained
on the outlierness scores and the classification model trained on the
raw features of data both predict 𝑝 to be an inlier or outlier with a
probability higher than 𝑡 , then 𝑝 is a confident inlier or outlier.

By default, AutoOD sets the value of threshold 𝑡 in Def. 4.3 as
0.99. This corresponds to a very strict criteria for finding confident
outliers and inliers to ensure their reliability. Our experiments show
this value works well in all cases (suggesting this is not a parameter
that needs to be tuned).

As discussed in Sec. 4.3, the logistic regression model trained
on the outlierness score features uses Equation 3 to assign each
object a probability. It corresponds to the confidence of the model in
its prediction of the object’s class label. Naturally, we can use this
probability to determine if the object is likely an outlier (or inliers).
That is, an object is potentially a confident inlier/outlier if and only
if 𝑃 (𝑦 = 1|𝑥 ;𝑏,𝑤) > 𝑡 or 𝑃 (𝑦 = 1|𝑥 ;𝑏,𝑤) < 1 − 𝑡 .

However, standard SVMs trained on the raw features of the data
do not produce a probability for each object, representing how con-
fident SVM is in its prediction of this object’s class. In this work,
we use the well-known Platt scaling [49, 53] method to calibrate
the probabilities. Platt scaling trains the parameters of an additional
sigmoid function to map the SVM outputs into probabilities.

AutoOD-Augment then unions the current stable and the confi-
dent outliers/inliers sets into two refreshed set of reliable outliers

and inliers (Lines 10-11). Moreover, AutoOD-Augment removes the
objects from the reliable object set if the two classification models
have conflicting predictions on these objects (Lines 12-13). This
further purifies the set of reliable objects.
Termination Condition. AutoOD-Augment proceeds until the set
of reliable objects does not change (Line 9 in Alg. 1). Next, we
intuitively show that this process is guaranteed to converge. First,
the detector pruning would stop, in the worst case when only one
detector were to remain. Then the stable outliers and inliers thus
would not change anymore. Now the update of the reliable object
set is only driven by the predictions of the two classification models.
The diminishing update of the set of reliable objects in turn gradually
stabilizes these two models trained on it. This eventually leads to the
stabilization of the set of confident inliers/outliers and the termina-
tion of AutoOD-Augment. Now the two models and the remaining
unsupervised outlier detectors highly agree with each other on the
predictions of the current reliable objects. Therefore, they tend to be
indeed reliable.

5 AUTOOD-CLEAN: CLEANING-BASED
RELIABLE OBJECT DISCOVERY

AutoOD-Clean trains a neural network to combine the predictions
of the unsupervised detectors to produce a set of reliable objects. We
first describe an important observation about the training process of
a deep neural network which we leverage, and then we introduce the
details of the AutoOD-Clean approach.

0.00

0.20

0.40

0.60

0.80

1.00

0 5 10 15 20 25 30 35 40

Ac
cu

ra
cy

Number of epochs

Mis-labeled

Correctly labeled

Figure 3: Observation: Evolution of Training Accuracy for Mis-
labeled and Correctly Labeled Samples.

Key Observation. Fig. 3 shows the evolution of model accuracy
for “mislabeled” and “correctly labeled” objects as a function of
training epochs when training a neural network model using a noisy
training dataset [62]. We consider the common setup where training
proceeds in epochs. We then inspect the evolution of the accuracy
of the model on the training objects. That is, after each epoch, we
take the model at that stage and see whether or not it makes an error
for each of the training objects. Here we assume we have access to
the ground truth of this noisy training dataset. As shown in Fig. 3,
the accuracy on “correctly labeled” objects is higher than on the
“mislabeled” objects, especially in the initial epochs of training.

Leveraging the above observation, we are now ready to propose an
approach to discover reliable training data. This approach AutoOD-
Clean starts with a large but noisy training dataset and iteratively
cleans it. AutoOD-Clean is inspired by the theory of minimizing
the trimmed loss [47]. Given a set of 𝑛 samples, standard model-
fitting involves choosing model parameters 𝜃 to minimize a loss

6



AutoOD: Automatic Outlier Detection SIGMOD’23, June 2023, Seattle, WA, USA

function over all 𝑛 samples. In contrast, the trimmed loss estimator
involves jointly choosing a subset of 𝛼𝑛 samples and parameters
𝜃 such that the loss on the subset is minimized over all choices of
subsets and parameters. While this objective is intractable in general,
AutoOD-Clean can be considered as an iterative methodology for
minimizing this trimmed loss. It simultaneously generates a reliable
training dataset and an effective neural network model, as iteratively
minimizing the trimmed loss.
Trimmed Loss Let D = p1, . . . , pn be the set of training objects, 𝜃
be the model parameters to be learned, and 𝑓𝜃 (.) be the loss function.
With this setting, the standard approach is to minimize the total loss
of all objects, i.e., min𝜃

∑
i f𝜃 (pi). In contrast, the least trimmed loss

(TL) estimator is given by:

𝜃 (𝑇𝐿) = 𝑎𝑟𝑔min
𝜃 ∈B

min
D: |𝑆 |= ⌊𝛼𝑛⌋

∑︁
𝑖∈D

𝑓𝜃 (𝑝𝑖 ) (9)

To find 𝜃 (TL) , we need to minimize over both the set D of size
⌊𝛼n⌋ – where 𝛼 ∈ (0, 1) is the fraction of objects we want to fit –
and the set of parameters 𝜃 . In general, solving for the least trimmed
loss estimator is hard, even in the linear regression setting [47], i.e.,
even when p = (x, y) and f𝜃 (x, y) = (y − 𝜃T x)2 .

5.1 AutoOD-Clean: Iterative Trimmed Loss
Minimization

As described in Alg. 3, AutoOD-Clean starts with a large but noisy
training dataset and alternates between training a neural network
based on trimmed loss and updating the training data using the early
training loss as well as the prediction results of the neural network.

The AutoOD-Clean approach is composed of three steps: initial
training data generation, modeling, and training data update.

Algorithm 3 AutoOD-Clean
1: function AUTOODCLEAN(SCORES, X)
2: labels = ENSEMBLE(Scores)
3: cur = [0, . . . , len(labels)] ⊲ Keeps track of remaining data indexes
4: while true do
5: model, lossList = RUNNN(X[cur], labels[cur], numEpochs = 3)
6: model = RUNNN(X[cur], labels[cur], numEpochs=10, model = model)
7: predictions = INFER(model, X)
8: cur = PRUNELOSS(lossList, cur)
9: cur, labels = ADDCONFOBJS(predictions, cur, labels)

10: if numRmv > numAdd then
11: break
12: return cur, labels

(1) Initial Training Data Generation. As shown in Alg. 3 (Line 2),
AutoOD-Clean starts by using all data objects as training data. The
labels of these objects can be produced by ensembling the results of
multiple detectors or using the results of any detector.
(2) Modeling. During the modeling process, we train a neural net-
work using the current training data (Lines 5–7, Alg. 3). Specifically,
we first train a neural network just for a few epochs and keep track
of the loss for each training object (Line 5, Alg. 3). Given an training
object, its loss is measured as the difference between the prediction
and its label using a typical loss function such as cross entropy [29].

AutoOD-Clean uses the loss for each object to prune mislabeled
objects. That is, it leverages the observation that mislabeled objects
tend to have higher loss than correctly labeled objects, especially
during the early epochs [62]. This stage of the process does not

require for the model to have converged; thus a handful of initial
epochs is sufficient. In our experiments, we use a small network with
3 hidden layers for all datasets; and thus set the number of epochs to
be 3. If using a larger network, we would set the number of epochs
to be a bit larger, say 5 or 10.

After recording the early loss for each training data object – the
average training loss it incurred in the early epochs, AutoOD-Clean
continues to train the network until it converges (Line 6 in Alg. 3).
Then AutoOD-Clean uses the converged model to make inference
on the entire dataset. In the outlier detection setting, the output is a
probability that can be interpreted as the confidences of the current
model on the object being an outlier or a inlier. Both the early losses
and the confidence scores will be used in the next step to update the
training data (Lines 8-9, Alg. 3).
(3) Training Data Update. First, AutoOD-Clean removes the train-
ing points with large early losses from the training data using the
cleaning rule defined below.

DEFINITION 5.1. Cleaning Rule. Let L𝐼 = {lI1, l
I
2, ..., l

I
n} denote

the early losses of the training objects I that are classified as inliers
and L𝑂 = {lO1 , l

O
2 , ..., l

O
n } denote the early losses of the training

objects O that are classified as outliers. A training object 𝑝𝑖 with
early loss 𝑙𝑖 will be removed if:

(1) li > mean(LI ) + std (LI ) when 𝑝𝑖 ∈ I; or (2)
li > mean(LO) + std (LO) when 𝑝𝑖 ∈ O

Algorithm 4 Pruning Objects with Large Early Losses
1: function PRUNELARGELOSS(LOSSLIST, CUR, LABELS)
2: outliers = labels[cur] == 1
3: lossThrOut = mean(lossList[outliers]) + std(lossList[outliers])
4: rmvIdx = cur[outliers][lossList[outliers] > lossThrOut]
5: inliers = labels[cur] == 0
6: lossThrIn = mean(lossList[inliers]) + std(lossList[inliers])
7: rmvIdx += cur[inliers][lossList[inliers] > lossThrIn)
8: cur = cur - rmvIdx
9: return cur

Alg. 4 shows the process of applying the cleaning rule to prune
objects. Suppose an object is temporarily considered as an outlier
(Line 2, Alg. 4). AutoOD-Clean will remove it if its loss is one
standard deviation larger than the mean loss of the outier labels. On
the other hand, AutoOD-Clean will remove an inlier if its loss is one
standard deviation larger than the mean loss of the inlier labels. Note
we use different criteria to prune mis-labeled inliers and outliers,
because outliers and inliers tend to show different patterns in their
early losses due to their distinct data characteristics. Our empirical
study shows that the early loss of outlier labels in average is larger
than inlier labels.
Fixing Erroneous Pruned Objects. AutoOD-Clean might erro-
neously remove some training objects due to the prediction errors of
the network. This in particular may arise during early training stages,
when the neural network model is trained on noisy training data
and thus may possibly have low accuracy. Because the training data
continuously gets improved in this iterative process, the accuracy
of the neural network model is also expected to increase over time.
This provides us with opportunities to fix the earlier mistakes made
by adding the high confidence objects back into the training data.

Next, we describe the process of adding objects with high predic-
tion confidence back into the training data set. We train the neural
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network until it fully converges. Then we make prediction on all
input data. That is, we apply the latest fully converged neural net-
work to classify the data into outliers or inliers. If an object is not
in the current training data, but it is being classified as an outlier or
inlier with a confidence higher than a threshold 𝑡 , we will add it to
the training data. On the other hand, if the label of a current training
object is different from the inference output, it will be removed from
the training data even if its loss is not large. The threshold 𝑡 by
default is set as 0.99, corresponding to a very strict requirement on
confidence level. Our experiments show it works well in all cases.
The Termination Condition. After updating the training data,
AutoOD-Clean will iteratively repeat this process, that is, it will
re-train the neural network in the next iteration using the new train-
ing data. This process continues until the number of removed objects
is smaller than the number of added objects (Lines 10–11, Alg. 3).
Next, we show that with this termination condition, AutoOD-Clean
is guaranteed to converge to a reliable training data.

5.2 Convergence Analysis
We show the convergence of AutoOD-Clean by proving that
AutoOD-Clean is able to recover the ground truth labels with a
linear convergence rate. Here we use the generalized linear model
to represent the neural network model which AutoOD-Clean uses.
This is a common practice [62], because the problem of analyzing a
general least trimmed loss estimator is intractable.

We analyze AutoOD-Clean with errors in the labels. We represent
the training objects in the form of (𝑥,𝑦) such that:

𝑦 = 𝑤 (𝜙 (𝑥)𝑇 · 𝜃∗) + 𝑒, (correctly labeled objects)

𝑦 = 𝑟 + 𝑒 (mislabeled objects)
(10)

Here 𝑥 represents the features of a training objects and 𝑦 denotes
the output, embedding function 𝜙 and link function 𝑤 are known, 𝑒
is random subgaussian noise with parameter 𝜎2 [65], and 𝜃∗ is the
ground truth. Let 𝛼∗ be the fraction of correctly labeled objects in
the training data.

For AutoOD-Clean, we use squared loss, i.e., 𝑓𝜃 (𝑥,𝑦) = (𝑦 −
𝑤 (𝜙 (𝑥)𝑇 · 𝜃 ))2. We assume the feature matrices are regular, as
defined below.

DEFINITION 5.2. Let Φ(𝑋 ) ∈ R𝑛×𝑑 be the features matrix for
all training objects, where the 𝑖th row is 𝜙 (𝑥𝑖 )𝑇 . Let W𝑘 = {𝑊 ∈
R𝑛×𝑛 |𝑊𝑖, 𝑗 = 0,𝑊𝑖,𝑖 ∈ {0, 1},Tr(𝑊 ) = 𝑘}. Define

𝜓− (𝑘) = min
𝑊 :𝑊 ∈

𝜎𝑚𝑖𝑛 (Φ(𝑋 )𝑇𝑊Φ(𝑋 )),

𝜓+ (𝑘) = max
𝑊 :𝑊 ∈

𝜎𝑚𝑎𝑥 (Φ(𝑋 )𝑇𝑊Φ(𝑋 ))
(11)

Φ(𝑋 ) is a regular feature matrix if for 𝑘 = 𝛼𝑛, 𝛼 ∈ [𝑐, 1],𝜓− (𝑘) =
𝜓+ (𝑘) = Θ(𝑛) for n = Ω(dlogd). Regularity states that every large
enough subset of training objects results in a well conditioned Φ(𝑋 ).

We prove the convergence claim by using an one-iteration update
lemma for the linear case [62].

LEMMA 5.1. Assume𝑤 (𝑥) = 𝑥 and we are using AutoOD-Clean.
The following holds per iteration:

| |𝜃𝑡+1 − 𝜃∗ | |2 ≤
√
2𝛾𝑡

𝜓− (𝛼𝑛) | |𝜃𝑡 − 𝜃∗ | |2 +
√
2𝜑𝑡 + 𝑐𝜉𝑡𝜎
𝜓− (𝛼𝑛) (12)

where 𝛼 denotes the fraction of objects that are being removed in
each iteration, 𝜑𝑡 = ∥∑𝑖∈𝑆𝑡 \𝑆∗ (𝜙 (𝑥𝑖 )

𝑇 𝜃𝑡 − 𝑟𝑖 − 𝑒𝑖 )𝜙 (𝑥𝑖 )∥2, 𝛾𝑡 =

𝜓+ ( |𝑆𝑡\𝑆∗ |), and 𝜉𝑡 =

√︃∑𝑛
𝑖=1 ∥𝜙 (𝑥𝑖 )22𝑙𝑜𝑔𝑛∥.

Note that in Lemma 5.1, 𝛼 is always larger than 1, because
AutoOD-Clean makes sure that the number of removed objects
is always larger than the number of added objects. By Lemma 5.1 a
𝛼 larger than 1 ensures that AutoOD-Clean bounds the error in the
next step based on the error in the current step. AutoOD-Clean thus
is guaranteed to converge.

PROOF. Let 𝜃𝑡 be the learned parameter at round 𝑡 , and 𝜃𝑡+1 be
the learned parameter in the next round, following Alg. 3. More
specifically, a subset 𝑆𝑡 with the smallest losses (𝑦𝑖 − 𝜃𝑇 · 𝜙 (𝑥𝑖 ))2 is
selected. 𝜃𝑡+1 is the minimizer on the selected set of sample losses.
Denote𝑊𝑡 as the diagonal matrix whose diagonal entry𝑊𝑡,𝑖𝑖 equals
1 when the 𝑖-th sample is in set 𝑆𝑡 , otherwise 0. Then, assume that
we take infinite steps and reach the optimal solution, we have:

𝜃𝑡+1 = (Φ(𝑋 )𝑇𝑊𝑡Φ(𝑋 ))−1Φ(𝑋 )𝑇𝑊𝑡𝑦

where Φ(𝑋 ) is an 𝑛 × 𝑑 matrix, whose 𝑖-th row is 𝜙 (𝑥𝑖 )𝑇 , and we
have used the fact that 𝑊 2

𝑡 = 𝑊𝑡 . Remind that the feature matrix
Φ(𝑋 ) is defined in Equation 11. For Φ(𝑋 ) whose every row follows
i.i.d. sub-Gaussian random vector, by using concentration of the
spectral norm of Gaussian matrices, and uniform bound, Φ(𝑋 ) is a
regular feature matrix.

On the other hand, denote𝑊 ∗ as the ground truth diagonal matrix
for the samples, i.e., 𝑊 ∗

𝑖𝑖
= 1 if the 𝑖-th sample is a clean sample,

otherwise 𝑊 ∗
𝑖𝑖

= 0. Accordingly, define 𝑆∗ as the ground truth set
of clean samples. For clearness of the presentation, we may drop
the subscript 𝑡 when there is no ambiguation. For bad samples, the
output is written in the form of 𝑦𝑖 = 𝑟𝑖 + 𝑒𝑖 , where 𝑒𝑖 represents the
observation noise, and 𝑟𝑖 depends on the specific setting we consider.
Under this general representation, we can re-write the term 𝜃𝑡+1 as

𝜃𝑡+1 = (Φ(𝑋 )𝑇𝑊Φ(𝑋 ))−1Φ(𝑋 )𝑇𝑊
(𝑊 ∗Φ(𝑋 )𝜃∗ + (𝐼 −𝑊 ∗)𝑟 + 𝑒)

= 𝜃∗ + (Φ(𝑋 )𝑇𝑊Φ(𝑋 ))−1 (Φ(𝑋 )𝑇𝑊𝑊 ∗Φ(𝑋 )𝜃∗

+ Φ(𝑋 )𝑇𝑊𝑟 − Φ(𝑋 )𝑇𝑊Φ(𝑋 )𝑇𝑊𝑊 ∗𝑟

− Φ(𝑋 )𝑇𝑊Φ(𝑋 )𝜃∗ + Φ(𝑋 )𝑇𝑊𝑒)

= 𝜃∗ + (Φ(𝑋 )𝑇𝑊Φ(𝑋 ))−1Φ(𝑋 )𝑇 (𝑊𝑊 ∗ −𝑊 )

(Φ(𝑋 )𝜃∗ − 𝑟 − 𝑒) + (Φ(𝑋 )𝑇𝑊Φ(𝑋 ))−1Φ(𝑋 )𝑇𝑊𝑊 ∗𝑒
8
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Therefore, the 𝑙2 distance between the learned parameter and
ground truth parameter can be bounded by:

∥𝜃𝑡+1 − 𝜃∗∥ = ∥(Φ(𝑋 )𝑇𝑊Φ(𝑋 ))−1Φ(𝑋 )𝑇 (𝑊𝑊 ∗ −𝑊 )

(Φ(𝑋 )𝜃∗ − 𝑟 − 𝑒) + (Φ(𝑋 )𝑇𝑊Φ(𝑋 ))−1

Φ(𝑋 )𝑇𝑊𝑊 ∗𝑒 ∥2
≤ ∥(Φ(𝑋 )𝑇𝑊Φ(𝑋 ))−1∥2︸                       ︷︷                       ︸

𝜏1

·

(∥Φ(𝑋 )𝑇 (𝑊𝑊 ∗ −𝑊 ) (Φ(𝑋 )𝜃∗ − 𝑟 − 𝑒)∥2︸                                                ︷︷                                                ︸
𝜏2

+ ∥Φ(𝑋 )𝑇𝑊𝑊 ∗𝑒 ∥2︸                ︷︷                ︸
𝜏3

)

For the term 𝜏1, 𝑊 selects 𝛼𝑛 rows of Φ(𝑋 ), i.e., Tr(𝑊 ) = 𝛼𝑛.
Therefore, 𝜏1 ≤ 1

𝜓− (𝛼𝑛) .
Next, the term 𝜏2 can be bounded as:

𝜏22 = ∥Φ(𝑋 )𝑇 (𝑊𝑊 ∗ −𝑊 ) (Φ(𝑋 )𝜃∗ − 𝑟 − 𝑒)∥22
= (Φ(𝑋 )𝜃∗ − 𝑟 − 𝑒)𝑇 [(𝑊 −𝑊𝑊 ∗)Φ(𝑋 )Φ(𝑋 )𝑇

(𝑊 −𝑊𝑊 ∗)] (Φ(𝑋 )𝜃∗ − 𝑟 − 𝑒)

≤ 2(Φ(𝑋 )𝜃∗ − Φ(𝑋 )𝜃𝑡 )𝑇 [(𝑊 −𝑊𝑊 ∗)Φ(𝑋 )Φ(𝑋 )𝑇

(𝑊 −𝑊𝑊 ∗)] (Φ(𝑋 )𝜃∗ − Φ(𝑋 )𝜃𝑡 )

+ 2(Φ(𝑋 )𝜃𝑡 − 𝑟 − 𝑒)𝑇 [(𝑊 −𝑊𝑊 ∗)Φ(𝑋 )Φ(𝑋 )𝑇

(𝑊 −𝑊𝑊 ∗)] (Φ(𝑋 )𝜃𝑡 − 𝑟 − 𝑒)

≤ 2𝜎𝑚𝑎𝑥 (Φ(𝑋 )𝑇 (𝑊 −𝑊𝑊 ∗)Φ(𝑋 ))2∥𝜃∗ − 𝜃𝑡 ∥22
+ 2(Φ(𝑋 )𝜃𝑡 − 𝑟 − 𝑒)𝑇 [(𝑊 −𝑊𝑊 ∗)Φ(𝑋 )Φ(𝑋 )𝑇

(𝑊 −𝑊𝑊 ∗)] (Φ(𝑋 )𝜃𝑡 − 𝑟 − 𝑒)

(13)

For the first term in Equation 13, let |𝑆𝑡\𝑆∗ | be the number of bad
samples in 𝑆𝑡 . Then the eigenvalue is bounded by𝜓+ ( |𝑆𝑡\𝑆∗ |). The
last term in Equation 13 is defined as 𝜑𝑡 := 𝜑 (𝑆𝑡 , 𝑆∗, ∥𝜃∗ − 𝜃𝑡 ∥2) =
∥∑𝑖∈𝑆\𝑆∗ (𝜙 (𝑥𝑖 )𝑇 𝜃𝑡 − 𝑟𝑖 − 𝑒𝑖 )𝜙 (𝑥𝑖 )∥2. The term 𝜏3 can be bounded
as:

𝜏23 = ∥Φ(𝑋 )𝑇𝑊𝑊 ∗𝑒 ∥2

≤ 𝑒𝑇Φ(𝑋 )Φ(𝑋 )𝑇 𝑒 =
𝑑∑︁
𝑖=1

(
𝑛∑︁
𝑗=1

𝑒 𝑗𝜙 (𝑥 𝑗 )𝑖 )2

≤ 𝑐

𝑛∑︁
𝑖=1

∥𝜙 (𝑥𝑖 )∥22𝑙𝑜𝑔𝑛𝜎
2

where the last inequality holds with high probability by the sub-
exponential concentration property, and all randomness comes from
the measurement noise 𝑒.

Then, as a summary, combining the results for all three terms, we
have:

| |𝜃𝑡+1 − 𝜃∗ | |2 ≤
√
2𝜓+ ( |𝑆𝑡\𝑆∗ |)
𝜓− (𝛼𝑛) | |𝜃𝑡 − 𝜃∗ | |2

+
√
2𝜑 (𝑆𝑡 , 𝑆∗, ∥𝜃∗ − 𝜃𝑡 ∥2)

𝜓− (𝛼𝑛)

+
𝑐

√︃∑𝑛
𝑖=1 ∥𝜙 (𝑥𝑖 )∥22𝑙𝑜𝑔𝑛
𝜓− (𝛼𝑛) 𝜎

(14)

□

5.3 The Selection Between AutoOD-Augment and
AutoOD-Clean

AutoOD-Augment and AutoOD-Clean work in two different ways:
AutoOD-Augment starts with a small set of reliable labels and keeps
augmenting it, while AutoOD-Clean starts with a large but noisy set
of labels, and keeps cleaning it. Although in general both methods
work well, as shown in Fig. 4 (Sec. 6.2), they complement each other
in terms of applicability concerning the availability of hardware and
data set types. In particular, we prefer AutoOD-Clean when it is hard
to acquire reliable labels initially. This, for example, is the case on
the Pendigits dataset where AutoOD-clean significantly outperforms
AutoOD-Augment. If the user does not have any GPU resources
available, then we recommend the users AutoOD-Augment, because
AutoOD-Clean needs GPUs to train a neural net. In the current
implementation, our AutoOD system starts with AutoOD-Augment.
If AutoOD-Augment only gets very few reliable labels at beginning,
it switches to AutoOD-Clean.

6 EXPERIMENTAL EVALUATION
In the experiments, we evaluate the effectiveness and efficiency of
AutoOD. We also analyze the quality of the automatically produced
reliable labels which are critical to the performance of AutoOD.

6.1 Experimental Methodology and Setup
Datasets. We evaluate the effectiveness of AutoOD using 11 out-
lier detection benchmark datasets [16, 60] with varying cardinality,
numbers of dimensions, and proportions of outliers. The main char-
acteristics of these datasets are summarized in Table 1.

Dataset # Instances Outlier Fract. # of Dims
PageBlock 5,473 10% 10
SpamBase 4,601 40% 57

Pima 768 35% 8
Shuttle 49,097 7% 9

Http 567,498 0.4% 3
Mulcross 262,141 10% 4

Annthyroid 7,129 7% 21
Musk 3,062 3% 166

Satimage-2 5,803 1.2% 36
Pendigits 6,870 2.3% 16

SMTP 95,156 0.03% 3

Table 1: Ten Benchmark Data Sets for Outlier Detection

Experimental Setup. The experiments were run on a single machine
with 32 Intel Xeon 2.30GHz cores, 120GB RAM and 500GB disk on
Google Cloud. We use one P100 GPU to train the neural networks.
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Outlier Detectors. We use four popular unsupervised outlier detec-
tion methods: Local Outlier Factor (LOF) [15], K-Nearest Neighbors
(KNN), Isolation Forest [44], and the Mahalanobis method that cover
diverse categories of outlier types including local outliers, global
outliers, tree-based outliers, and statistical-based outliers.

For all four methods, we configure them with a variety of differ-
ent parameter settings. First, all methods have a parameter 𝑁 that
controls the number of outliers it returns. In our experiments, we
pick 6 𝑁 values, so that the fraction of the outliers each method
returns falls into the range from 0.5% to 10%.

Next, we vary the parameters specific to each method. Both LOF
and KNN have the number of neighbors 𝑘 as parameter. We work
with 10 different 𝑘 values, with the actual values of 𝑘 randomly
picked in a range from 1 to 100. For the Isolation Forest, we vary
the number of features 𝑛𝑢𝑚_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 to train the base estimator
of the forest. For all datasets, we vary 𝑛𝑢𝑚_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 from 20% to
100% of the available features with a 20% interval. The Mahalanobis
method does not have any specific parameter.

In summary, we use 156 instantiated outlier detectors (60 (6× 10)
LOF detectors, 60 (6×10) KNN detectors, 30 (6×5) Isolation Forest
detectors, and 6 Mahalanobis method detectors.
Algorithms. We compare the following algorithms:

• AutoOD-Augment (Sec. 4) and AutoOD-Clean (Sec. 5): our
two AutoOD methods.

• LODA [52] and LSCP [71]: state-of-the-art outlier ensemble
methods. Like AutoOD, outlier ensemble methods use many de-
tectors to detect outliers. So they are a natural point of comparison.
However, these works only use the detectors from the same detection
method, e.g., LOF [15].

• Snorkel [55–57]: given a set of noisy labeling sources, aims
to assign label to each object with high accuracy. We use its most
recent variant [57] to integrate results from different outlier detectors,
treating these detectors as noisy labeling sources. This can be seen
as an advanced ensemble method.

• PyODDs [43]: leverages AutoML to select outlier detector, with
strong assumption that ground truth labels are available.

• MetaOD [72]: uses a pre-trained meta learning model to select
a good detector from many detectors, in which these detectors are
pre-encoded during the training phase. We use the pre-trained model
that the authors have published as core ingredient of their approach
(https://github.com/yzhao062/MetaOD).

• Isolation Forest [44]: we compare against Isolation Forest with
a random configuration. Same as [46], we report its accuracy as
the average accuracy of 30 Isolation Forest models we use in our
experiment, which can be considered to be equivalent to an Isolation
Forest with randomly chosen hyper-parameters.

• Best_Unsupervised: the best unsupervised outlier detector
among all detectors discovered by an oracle, where we use ground
truth labels to compute F-1 score of each detector.

• Ground-Truth(GT): supervised classifier that is trained using
the ground truth as labels. This corresponds to a best case scenario,
as it knows upfront what are the outliers and inliers in the data set.
As in AutoOD-Augment, we use SVM as supervised classification
technique. We train SVM model by randomly sampling 50% of
dataset as training data.

Metrics. We first evaluate effectiveness at detecting outliers by mea-
suring the F-1 score for the outlier class, given F-1 is known to
be robust to class imbalance. F-1 score considers both precision
and recall, where precision is the number of correctly detected out-
liers divided by the number of all outliers returned by the detector,
and recall is the number of correctly detected outliers divided by
the number of all ground truth outliers. F-1 is computed as F-1 =
2 × precision×recall

precision+recall . We also report the precision and recall separately.
Next, we evaluate the efficiency of AutoOD including the running/-
training time, its scalability to the number of detectors, and the
memory consumption. In addition, we report the statistics of the
reliable labels that AutoOD produces and the number and the types
of detectors that AutoOD-Augment preserves. Finally, we evaluate
if AutoOD-Augment is effective at identifying the bad detectors.
Parameters. For the methods that fall into the category of auto-
matic detector selection including MetaOD and PyODDs we use the
configuration suggested by their original authors in the literature.
For example, in the AutoML-based PyODDs, there is no parameter
to tune other than ensuring it uses the same set of detectors that
AutoOD uses. Per the suggestion of the MetaOD [72] authors, we
use the model they published, which in the training phase uses more
types of outlier detectors than AutoOD. For the Isolation Forest, per
the suggestion of [46], We report its accuracy as the average accu-
racy of 30 Isolation Forest detectors we use. For the ensemble-based
methods including Snorkel, LODA, and LSCP, we tune the parame-
ters per the instruction of the authors and report the best results on
each dataset. Snorkel uses the same set of detectors that AutoOD
uses. We set its learning rate as 0.001 and the number of epochs as
1000. LODA requires the users to determine the outlier rate which is
set as the true outlier rate of each dataset in our experiments. Per the
authors’ recommendation, LSCP uses LOF as the detection method.
For each LOF detector, we set its outlier rate in the the same way as
our AutoOD does.

6.2 Effectiveness Evaluation
6.2.1 Summary of Effectiveness Results. In this experiment
we measure the effectiveness of AutoOD using a variety of bench-
mark outlier detection data sets. We find that AutoOD is consistently
able to detect outliers with an accuracy higher than the best outlier
detector among hundreds of configured detectors, while all other ap-
proaches we evaluated perform significantly worse. In fact, AutoOD
succeeds to achieve an accuracy comparable to supervised outlier
classifiers trained with ground truth labels – yet without having
any access to such ground truth knowledge. AutoOD significantly
outperforms the two SOTA outlier ensemble methods (LODA and
LSCP), Snorkel, PyODDs, MetaOD, and Isolation Forest by 12 to
97 points (out of 100) in the F-1 score.

6.2.2 Detailed Analysis of Effectiveness. Fig. 4 shows the re-
sults on ten benchmark datasets. At the 𝑥 axis, the datasets are
ordered by their sizes. Http is the largest dataset. AutoOD applies
the same configuration to all data sets. On almost all datasets, Au-
toOD outperforms all other methods except 𝐺𝑇 – with the later the
unfair advantage of full access to the ground truth to train its outlier
classifier and hence it is expected to perform very well.

Comparison to Best Unsupervised. Compared to the best unsu-
pervised detector (discovered by an oracle using the ground truth),
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Figure 4: Effectiveness Evaluation of All Methods on Ten Benchmark Data Sets using F-1 Metric
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Figure 5: Effectiveness Evaluation of All Methods on Ten Benchmark Data Sets using Precision Metric
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Figure 6: Effectiveness Evaluation of All Methods on Ten Benchmark Data Sets using Recall Metric

AutoOD-Augment achieves higher F-1 scores on 9 out of 10 datasets
by up to 38 points and AutoOD-Clean gets better F-1 scores on 8
out of 10 datasets by up to 39 points, without relying on human
tuning. This is because AutoOD intelligently combines the contribu-
tions of all unsupervised detectors in the process of automatically

discovering reliable labels, instead of relying on one single detector
to produce the final results.

Comparison to Ensemble. The two outlier ensemble methods
(LODA, LSCP) and Snorkel perform consistently worse than the
best outlier detector, often with a large margin. The reason may be
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that the detectors often produce diverse results on many objects. It is
thus challenging to make consensus-based inference on these objects
– yet this is indeed the nature of these outlier ensemble methods.

Comparison to PyODDs. Although PyODDs uses domain knowl-
edge in the form of ground truth labels (to which our methods do not
have access), it cannot find the best detector in all cases and often
ends up with a poor detector. Therefore, in many cases it performs
even worse than LODA, LSCP, and Snorkel, especially for large
datasets. Because our AutoOD consistently outperforms the best
detector, it thus significantly outperforms all these methods from 12
to 97 points in F-1 score.

Comparison to MetaOD. We use the model published by the au-
thors. During training MetaOD has already seen 8 out of the 10 test-
ing datasets used in our experiments, which should bias performance
in its favor. Overall, MetaOD slightly outperforms Snorkel and Py-
ODD, showing that this interesting meta-learning based method
works to some extent.

However, even on the 8 datasets seen before, MetaOD cannot find
the best detector from the candidates, while it completely fails on
the two previously unseen datasets (Mulcross and HTTP), ending
up with choosing a detector that performs poorly. This indicates
MetaOD has poor generalization ability, probably because the char-
acteristics of outliers in different datasets can be rather distinct.

Comparison to Isolation Forest. For the Isolation Forest with
a random configuration, we get a similar conclusion to the empiri-
cal study paper [46], namely, that it is comparable to the methods
that select one method from a number of outlier detectors and to
ensemble-based methods. However, this method still performs sig-
nificantly worse than the best unsupervised detector and than our
two AutoOD-based approaches, because Isolation Forests do not
always perform the best among all detectors, as shown in Table 4.

Comparison to GT. Compared to GT, our two AutoOD methods
achieve comparable or even slightly higher F-1 scores on 6 out of
the 10 datasets, even though AutoOD does not have access to any
ground truth training data. However, on the Pendigits and Annthyroid
datasets, AutoOD does not perform as well as GT. This is because
for these datasets, all unsupervised outlier detectors have very low
F-1 scores. Therefore, AutoOD cannot identify many high quality
labels from the output of these unsupervised detectors.

Scalability to Large Data & Robustness to Dimensionality.
As shown in Fig. 4, the larger the datasets are, the better AutoOD
performs, indicating its scalability to large data. This is because it
is easier to produce a sufficient number of quality labels from large
datasets. The dimensionality of the datasets used in our experiments
falls in a large range from 10 to 166. AutoOD works well on the
high dimensional Musk data. This shows AutoOD is robust to di-
mensionality. Because any outlier detection method can be plugged
into AutoOD, base detectors less sensitive to data dimensionality
thus can be used. For example, in our experiments we use Isolation
Forest known to work well on high dimensional data.

The Convergence. In Sec. 4.4 (Termination Condition) and
Sec. 5.2 we have shown that AutoOD-Augment and AutoOD-Clean
are guaranteed to converge. In our experiments, we observe that
on average AutoOD-Augment converges in 21 iterations, while
AutoOD-Clean converges in 12 iterations.

The Performance Variance of AutoOD on Different Datasets.
For some datasets, AutoOD is close to GT, while for others the

difference is big. This is because of the quality of the labels that
AutoOD automatically produces. When AutoOD is able to produce
high quality labels, AutoOD tends to work as well as GT (Ground
Truth) which uses ground truth labels to train an outlier classification
model. As shown in Fig. 4, the performance of AutoOD is com-
parable to GT on the large datasets, because AutoOD has a larger
chance to produce labels that are indeed reliable. Our analysis on the
automatically produced labels (Table 2) confirms this. On the Musk,
Stimage-2, Mulcross, Shuttle, and Http datasets, the labels produced
by AutoOD have an accuracy close to 1. Interestingly, we observe
that typically AutoOD does not need a large number of outlier labels
to achieve a high accuracy in outlier detection. As long as it gets a
sufficient number of accurate inlier labels, AutoOD performs well.
Because outliers are typically rare, this makes the strategy used by
AutoOD well-suited to outlier detection.

AutoOD-Augment VS AutoOD-Clean. As we have discussed
in Sec. 5.3, AutoOD-Augment and AutoOD-Clean work in two
different ways and complement each other. However, we observe
that AutoOD-Augment and AutoOD-Clean achieve similar accuracy
results on many datasets. Our analysis on the reliable labels confirms
that this is because the reliable labels that the two methods produce
tend to have a similar quality (Table 2) and in most cases, heavily
overlap with each other. We observe that these common reliable
labels typically correspond to the same set of “clear” outliers and in-
liers which are relatively easy for the unsupervised outlier detection
detectors and hence AutoOD-Augment/AutoOD-Clean to capture.

6.2.3 Precision and Recall. We study the precision and recall
of the methods that perform best on F-1 including our two AutoOD
methods, Isolation Forests, MetaOD, and the best unsupervised de-
tector. We omit other methods as including them makes the graph
hard to read. As shown in Fig. 6 and 6, AutoOD significantly outper-
forms all other methods. Moreover, AutoOD performs even better on
recall than on F-1. This is important to outlier detection, as missing
outliers (false negatives) often causes bigger problems than false
alarms (false positives).

6.3 Reliable Label Analysis
In Table 2, we show the statistics (the quality and the number) of
reliable labels that AutoOD produces separately for inlier and outlier
labels. We make the following observations:

• Both AutoOD-Augment and AutoOD-Clean do not need a large
number of reliable outliers to achieve good performance; as long
as a sufficient number of reliable inliers can be identified that the
system can rely on, i.e., that are high quality, AutoOD-Augment and
AutoOD-Clean work well.

• On large datasets, the reliable labels that AutoOD produces are
near perfect. Therefore, AutoOD achieves an accuracy close to that
of the supervised method GT. This is because the larger the dataset
is, the better the chance that AutoOD is able to produce labels that
are indeed reliable.

• The accuracy of reliable inlier labels that AutoOD finds is con-
sistently high, indicating it is easier to find reliable inliers from the
datasets than outliers.
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Datasets
Accuracy Number of Points

AutoOD-Augment AutoOD-Clean AutoOD-Augment AutoOD-Clean

F-1 Outlier
Acc Inlier Acc F-1 Outlier

Acc
Inliner

Acc Outlier Inliner Outlier Inlier

PageBlock 0.657 0.670 0.976 0.743 0.721 0.973 282 4413 258 2076
SpamBase 0.597 0.431 0.840 0.547 0.425 0.760 3761 275 2001 1063

Pima 0.691 0.531 0.980 0.756 0.791 0.874 196 50 43 103
Pendigits 0.421 0.400 0.989 0.362 0.350 0.972 140 6528 75 3105

Annthyroid 0.046 0.063 0.942 0.890 0.802 1.000 206 6101 247 1068
Musk 1.000 1.000 1.000 1.000 1.000 1.000 34 2658 22 1514

Satimage-2 0.984 1.000 1.000 0.943 0.926 1.000 60 5642 27 2488
mulcross 0.981 0.963 1.000 1.000 1.000 1.000 27229 231736 26213 34621
Shuttle 0.998 0.996 1.000 0.968 0.976 1.000 2058 44740 482 6791

Http 0.946 0.898 1.000 0.949 0.924 1.000 118 535406 189 43251
SMTP 0.690 0.714 1.000 0.644 0.633 1.000 28 94979 30 91856

Table 2: Reliable Label Analysis

Method Precision Recall F-1
IForest 0 0 0

Best Unsupervised 0.667 0.667 0.667
MetaOD 0.536 0.44 0.481

AutoOD_Augment 0.714 0.667 0.690
AutoOD_Clean 0.76 0.633 0.691

Table 3: Evaluation on SMTP (Low Outlier Rate)

6.4 Effectiveness of AutoOD on Dataset with Low
Outlier Rate

We experiment on the SMTP dataset [16, 60] with an extremely
low outlier rate at 0.03%. Note this is the only outlier detection
benchmark dataset we can find that is publicly available and has a
very low outlier rate. As shown in Table 3, both AutoOD-Augment
and AutoOD-Clean achieve an accuracy higher than the best unsu-
pervised detector. They also significantly outperform other methods.
This is similar to the results on other datasets with higher outlier
rates. Note in the effective experiments we discussed in Sec. 6.2,
we evaluated AutoOD on datasets with outlier rates varying from
0.4% to 40%, confirming that our AutoOD works well across a rich
variety of outlier rates.

As we have analyzed in Sec. 6.3, this is because AutoOD does not
need a large number of outlier labels to achieve a good performance.
As long as AutoOD obtains a sufficient number of accurate inlier
labels, it works well. In outlier detection, getting reliable inlier labels
tends to be much easier than getting reliable outlier labels. Therefore,
AutoOD does not suffer as much from the rarity of outliers.

6.5 Efficiency Evaluation
We evaluate the running/training time of AutoOD, its scalability in
the number of outlier detectors, and the memory requirement.

6.5.1 Comparison of Running time to Other Methods.
We compared our AutoOD-Augment and AutoOD-Clean against
MetaOD [72], PyODDs [43] and Snorkel [57], all of which, like
AutoOD, use many different types of outlier detectors to produce
the final detection results. As shown in Fig. 7, except on the Pendigit
dataset, PyODDs is always the slowest because of the complex
AutoML technique they use.

The total running time of AutoOD is composed of the time of
first running the unsupervised outlier detectors and then second
learning the reliable labels from the detection results, with the former
typically dominating the latter, as shown in Fig. 7. Because both our
methods AutoOD-Augment and AutoOD-Clean run the same set of
unsupervised detectors, they typically have a similar total running

time. This is why, compared to manual tuning, which first runs all
detectors and then picks a good one, AutoOD does not have much
overhead. This also explains why AutoOD tends to be better than or
comparable to Snorkel in running time which runs the same set of
outlier detectors as AutoOD.

For our comparison to MetaOD, we use the pre-trained model that
the authors have published. Hence, we cannot measure the MetaOD
training time. Thus, we only report the running time that it takes
to process the targeted dataset in which outliers are to be identified.
Clearly the complexity of MetaOD depends on the inference time of
the meta learning model plus the final detector it selects. We note that
MetaOD tends to be slow at inference phase and often ends up with
an expensive outlier detector, in particular, ABOD [38]. Therefore, in
many cases, it is slower than AutoOD. However, among all methods,
this second phase of MetaOD (given we skip phase 1 of training)
tends to be the fastest on large datasets.

Note all above methods we compare against have much lower
accuracy than AutoOD as shown in Fig. 4, while our AutoOD
achieves this gain without paying any significant cost in running
time. We thus consider AutoODsuperior overall.

6.5.2 Scalability in the Number of Outlier Detectors. Because
AutoOD-Augment and AutoOD-Clean perform similarly in the run-
ning time (for the reasons we discussed above), here we only report
on the results of AutoOD-Augment. We run this experiment on the
MulCross dataset and vary the number of detectors from 50 to 250 by
gradually increasing the number of detectors per detection method.

As we can see from Fig. 8, the running time of AutoOD-Augment
increases, as expected. However, the slope becomes flatter as the
number of detectors gets larger. This is because AutoOD improves
on the running time of the unsupervised outlier detectors by shar-
ing the common computation across different outlier detectors. In
particular, for the slower ones among the detectors, namely, the 𝑘NN-
based [54] and LOF [15] detectors that utilize expensive 𝑘NN search,
our detectors share 𝑘NN search as much as possible. Therefore, the
running time increases sub-linearly with the number of detectors.

6.5.3 Memory. In AutoOD, the memory consumption comes pri-
marily from the data structure that keeps the anomaly scores that the
outlier detectors produce per data object. This space complexity is
𝑛 × 𝑑, where 𝑛 represents the number of data objects and 𝑑 is the
number of the unsupervised detectors. On the HTTP dataset, which
is the largest dataset we tested, the peak memory consumption is
708M. Therefore, memory is not a performance bottle in AutoOD.
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Figure 8: Scalability on the Number of Detectors
Dataset Rank of Detector Final Detector

PageBlock 2nd KNN
SpamBase 1st LOF

Pima 1st IForest
Shuttle 1st IForest

Http 3rd KNN
Mulcross 1st Mahalanobis

Annthyroid 2nd LOF
Musk 1st IForest

Satimage-2 1st LOF
Pendigits 1st IForest

SMTP 1st LOF

Table 4: AutoOD-Augment: the Remaining Detector

6.6 Evaluation of Detector Pruning of
AutoOD-Augment

As shown in Sec. 4, AutoOD-Augment iteratively prunes outlier
detectors. In this experiment we evaluate the number and the types
of detectors preserved by AutoOD-Augment. On average AutoOD-
Augment preserves 1.4 detectors and in most cases preserves 1
detector, while their types vary across different datasets, as shown
in Table 4. The detection methods that AutoOD most frequently
preserves are the Isolation Forest and LOF. This is aligned with
empirical studies that evaluate different unsupervised outlier detec-
tion methods [16], which find: (1) no method routinely outperforms
others; (2) Isolation Forest and LOF tend to work better in general.

We further evaluate the quality of the outlier detector that
AutoOD-Augment preserves. For this, we add an additional con-
straint into its termination condition to ensure that only one detector

will survive. Tab. 4 shows the rank of this remaining outlier detector
among all outlier detectors based on their F-1 scores. AutoOD-
Augment selects the best outlier detector on 7 out of 10 datasets.
On the remaining 3 datasets, AutoOD-Augment picks the second or
third best detector.

7 RELATED WORK
Automated Machine Learning (AutoML). AutoOD targets a simi-
lar problem as AutoML in that it aims to learn which of many models
is the best. However, in contrast to our work, existing AutoML sys-
tems [13, 14, 25, 28, 37, 40, 42, 45, 63, 64, 74] all focus on (1)
supervised machine learning and (2) require labeled training data for
automatic cross validation. PyODDS [43] leverages AutoML tech-
niques to select one outlier detection method and their corresponding
input parameter setting, but assuming the existence of labeled data.
Further, our experiments show that PyODDS is not very effective in
finding good outlier detectors among candidate detectors even using
ground truth labels. AutoOD significantly outperforms PyODDS
even in this setting.
Outlier Ensemble. Ensemble has been studied in the context of
outlier detection [4, 5, 39, 52, 71]. In [4, 5], the authors investigated
the theoretical underpinnings of outlier ensemble. In [39], the au-
thors use feature bagging for outlier ensemble. However, it relies
on the strong assumption that they “have information about normal
behavior (class) in the data set”, which often does not hold.

LSCP [71] and LODA [52] are the recent outlier ensemble works.
LSCP defines a local region around an instance using the consensus
of its nearest neighbors in randomly selected feature sub-spaces.
It then combines the detection results produced by multiple base
detectors in this local region as the model’s final output using tra-
ditional ensemble tricks [5]. In its evaluation LSCP outperforms
feature bagging [39].

LODA [52] first uses many one-dimensional histograms to pro-
duce outlier candidates. An object is considered as an outlie candi-
date if its value on one dimension is out of distribution. LODA then
aggregates the sets of outlier candidates to produce the final results,
again based on consensus. LSCP and LODA perform much worse
than our AutoOD, because based on our empirical study the base
detectors often produce very diverse results on many of the objects
and thus make consensus-based inference challenging. AutoOD does
not rely on the ensemble to discover all outliers. Instead it focuses
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on discovering the reliable outliers/inliers and then uses those as
pseudo-labels to train a classifier, hence much more effective.
Weak Supervision. Given a set of noisy labeling functions that cover
different overlapping subsets of a given data set, Snorkel [55, 57]
assigns a label to each object in the dataset by weighting and then
ensembling the results produced by these labeling functions. More
specifically, using a matrix completion technique, Snorkel learns
a weight for each function based on their agreement rates. If a
function agrees with a lot of other functions, Snorkel tends to assign
a large weight to it. So it can be considered as an advanced ensemble
method. As confirmed in our experiments (Sec. 6), Snorkel typically
performs much worse than the best individual detector for the reason
we discussed above on outlier ensembles.
Parameter Tuning in Outlier Detection. ONION [17] is an online
system that, given a data set, allows the users to interactively tune
the parameters of distance-based outlier detection. The key idea is
to pre-compute and index results of parameterized distance-based
outlier detectors into a compact index. Using index-lookup, ONION
is able to answer outlier detection requests with different parameter
settings in near real-time. Unlike our AutoOD, it still relies on the
humans to manually decide which parameter setting to request and
thus to tune the parameters. Further, it only supports one specific
outlier technique, that is, distance-based outliers [35].

MetaOD [72] is a meta-learning based method. Its key idea is to
run a large number of outlier detectors on historical outlier detection
benchmark datasets with ground truth labels and use this prior expe-
rience to automatically select an effective model to be employed on
a new dataset. To capture task similarity, it introduces specialized
meta-features to model the characteristics of the outliers in a dataset.
However, as confirmed in our experiments (Sec. 6.2.2), even on the
8 testing datasets seen in the training process, MetaOD cannot find
the best detector from the candidates, while on the 2 unseen datasets,
it ends up with choosing a detector that performs poorly, indicating
its poor generalization ability.
Human-in-the-Loop Outlier Detection. HOD [19], a crowd-based
method, relies on humans to find outliers. HOD first uses many
unsupervised outlier detectors to produce a large outlier candidate
set, taking the union of the detected outliers. To reduce human labor
costs, it designs some questions that once answered by humans help
verify the status of multiple outlier candidates. In contrast, AutoOD
does not make use of any human supervision, yet succeeds to achieve
accuracy comparable to supervised outlier classification.
Deep Anomaly Detection. Deep learning has been used to detect
outliers from data in complex format such as image or timeseries,
typically by learning a representation that better distinguishes out-
liers from inliers. Some of these techniques [8, 22, 59, 69] use the
reconstruction errors of Auto-Encoder as the anomalous score to
detect outliers, assuming that Auto-Encoders incur larger recon-
struction errors on outliers than inliers. Some other techniques use
the same principle, but apply different deep learning techniques to
learn the data representation, such as Generative Adversarial Net-
works [6, 51, 68], self-learning models [27] and Auto-regressive
models [2]. AutoOD is compatible with these methods.

To learn a representation effective in separating outliers, most
of these methods require a clean training data set – a data set not
containing any outliers. However, such clean training data rarely
exist in real applications. Robust deep anomaly detection [12, 20,

24, 66, 73] targets this problem by finding data with potentially
corrupted features in the training process, while AutoOD-Clean finds
mislabeled objects from automatically produced outlier/inlier labels.
Elite [70] instead uses a small number of ground truth labels to
mitigate the impact of outliers on representation learning. However,
ground truth labels are not available in the unsupervised setting
which AutoOD targets.
Data Fusion. Data fusion integrates data from different sources
which potentially conflict with each other to obtain better description
about the same objects. To exclude the effect of low quality data
sources, in [23] the authors select a subset of data sources that
balance the cost and the gain, where the gain is approximated on a set
of samples with their truths known beforehand. However, AutoOD
does not assume the availability of the ground truth. CRH [41]
estimates the source reliability by iterating truth estimation and
source weighting. However, it relies on the users to define a cost
function and a regularization funcition based on the characteristics
of the data sources and the source reliability distributions. However,
such knowledge does not exist in AutoOD setting.

8 CONCLUSION
In this work, we propose AutoOD that elegantly unifies the merits
of both unsupervised outlier detection and supervised classification
into one solution for tackling outlier detection. AutoOD leverages
a diverse set of unsupervised outlier detectors to iteratively gen-
erates high quality labels for the data. Using these automatically
generated labels, it then trains a classification model to reliably dis-
cover outliers. We design two strategies for realizing the AutoOD
methodology, namely AutoOD-Augment and AutoOD-Clean, which
differ in the way they generate the training set for the classifier. Our
experiments show the effectiveness of the two AutoOD-based meth-
ods – achieving consistently 12 to 97 points gain in the F-1 score
compared to a wide range of alternate solutions on 11 benchmark
outlier data sets.
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