
RITA: Group Attention is All You Need for Timeseries
Analytics
JIAMING LIANG, University of Pennsylvania, USA

LEI CAO, U of Arizona/MIT, USA

SAMUEL MADDEN,Massachusetts Institute of Technology, USA

ZACHARY IVES, University of Pennsylvania, USA

GUOLIANG LI, Tsinghua University, China

Timeseries analytics is important in many real-world applications. Recently, the Transformer model, popular

in natural language processing, has been leveraged to learn high quality feature embeddings from timeseries:

embeddings are key to the performance of various timeseries analytics tasks such as similarity-based timeseries

queries within vector databases. However, quadratic time and space complexities limit Transformers’ scalability,

especially for long timeseries. To address these issues, we develop a timeseries analytics tool, RITA, which uses a

novel attentionmechanism, named group attention, to address this scalability issue. Group attention dynamically

clusters the objects based on their similarity into a small number of groups and approximately computes the

attention at the coarse group granularity. It thus significantly reduces the time and space complexity, yet

provides a theoretical guarantee on the quality of the computed attention. The dynamic scheduler of RITA

continuously adapts the number of groups and the batch size in the training process, ensuring group attention

always uses the fewest groups needed to meet the approximation quality requirement. Extensive experiments

on various timeseries datasets and analytics tasks demonstrate that RITA outperforms the state-of-the-art in

accuracy and is significantly faster — with speedups of up to 63X.

CCS Concepts: • Information systems→ Data management systems.

Additional Key Words and Phrases: Timeseries Analytics, Self-supervised, Attention, Efficient Transformers

ACM Reference Format:
Jiaming Liang, Lei Cao, Samuel Madden, Zachary Ives, and Guoliang Li. 2024. RITA: Group Attention is All You

Need for Timeseries Analytics. Proc. ACM Manag. Data 2, 1 (SIGMOD), Article 62 (February 2024), 28 pages.

https://doi.org/10.1145/3639317

1 INTRODUCTION
Many data-driven applications involve processing massive timeseries data, including IoT [14],

medical AI [17], stock market [32], etc. As such, there is a great need for timeseries analytics,

such as forecasting [9], classification [24], clustering [36], similarity search [45], and anomaly

detection [57], with applications ranging from automatically diagnosing diseases [6], recognizing

human activities [34], to stopping financial fraud [67].

In particular, in the database community, vector databases [61] are being used to store and index

high-dimensional feature embeddings of unstructured and semi-structured data, which allows users

Authors’ addresses: Jiaming Liang, University of Pennsylvania, Philadelphia, PA, USA, liangjm@seas.upenn.edu; Lei Cao, U

of Arizona/MIT, Tucson, AZ, USA, lcao@csail.mit.edu; Samuel Madden, Massachusetts Institute of Technology, Cambridge,

MA, USA, madden@csail.mit.edu; Zachary Ives, University of Pennsylvania, Philadelphia, PA, USA, zives@cis.upenn.edu;

Guoliang Li, Tsinghua University, Beijing, China, liguoliang@tsinghua.edu.cn.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).

ACM 2836-6573/2024/2-ART62

https://doi.org/10.1145/3639317

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 62. Publication date: February 2024.

https://doi.org/10.1145/3639317
 https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3639317

62:2 Jiaming Liang, Lei Cao, Samuel Madden, Zachary Ives, and Guoliang Li

Timeseries Dataset

2

users

1

2

 2
Return Query Results

Store
(Embeddings, Timesereis)

as (key, value)

DB queries
Provide Datapoints

Timeseries Queries

1

2 ML Queries

e.g.
Classification

RITA Vector Database

Timeseries
Dataset

2

Users

1

2

Store
(Embedding, Timeseries)

as (key, value)

Vector DB Query

Provide
Timeseries

Timeseries
Queries

2
ML

Classification

RITA Vector Database

Streaming Events

11

Timeseries Dataset

Fig. 1. RITA in a timeseries-based query system

to efficiently explore this data by conducting similarity searches in the embedding space. Effective

feature representations are a key building-block to construct a valid vector database.

As a real-world example, we have been collaborating with a major US hospital [7] to develop a

large-scale interactive system to label EEG segments (450 million segments, 30TB) with 6 classes

representing different types of seizures. These labeled EEG segments are used to train a classifier

which can then automatically detect seizures based on EEG signals collected during the clinical

observation of patients. The goal of this system is to propagate the labels provided by the experts

to similar segments, thus reducing the manual labeling efforts by the neurologists. Our timeseries

feature embedding approach, RITA, functions as a core component in this system. More specifically,

we use RITA to convert the EEG segments into feature embeddings and store them in a vector

database which supports similarity search requests submitted by the neurologists to return the 𝑘

nearest neighbors of the to-be-labelled segment, as depicted in Fig. 1.

Recently researchers [70] have started leveraging the self-supervised pre-training methodology

of Transformers [5, 19, 59], which have proven remarkably successful in natural language pro-

cessing (NLP), to automatically learn high quality feature embeddings from timeseries. In NLP,

self-supervised pre-training exploits the sequential patterns (correlations) among the words in

sentences to produce contextualized feature embeddings. Timeseries bear similarity to natural

language because in timeseries data the sequential order among the values (stock price, volume,

etc.) over time matters. That is, each value is highly correlated with other values observed before or

after it. Therefore, pre-training a Transformer model which takes the correlations among different

observations into account is a natural idea to learn feature embeddings from timeseries. Indeed, the

experiments in [70] confirm that Transformer-based methods outperform traditional timeseries

analytics techniques.

Existing work [70] that directly applies Transformers to learn features from timeseries data

has been shown not to scale to long timeseries [35]. The idea of self-attention [59] is central to

pre-training methods in NLP: It computes pairwise correlations among different semantic units in a

sequence (in NLP, a sentence); as such, it has quadratic time and space complexity in the length of the

input sequence. This limits the model’s scalability, especially when handling large-scale timeseries

data, which is common in real-world applications such as IoT, medical AI, and finance [7, 39, 71].

Predictions about timeseries may need to look at hundreds of thousands of prior samples to achieve

accuracy.

Referring again to our EEG project, seizures are brief, so we chunk EEG data into 2-second

segments and detect seizures at the segment level. However, the classification of a particular

segment depends on up to 12 hours of prior signal to consider long-term trends and determine if

one 2-second segment indicates a seizure. There are more than 21,000 segments in 12 hours. This

greatly exceeds the number of semantic units that typical NLP tasks expect. For example, BERT [19]

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 62. Publication date: February 2024.

RITA: Group Attention is All You Need for Timeseries Analytics 62:3

limits the number of units to 512 and even massive models like GPT-3 [5] limit the number of units

to 2048.

Although in NLP some lower-complexity methods have been proposed to approximately compute

self-attention [11, 31, 62], their performance degrades dramatically when used on timeseries, due

to the gap between natural language and timeseries, as we will show in our experiments.

Proposed Approach. To tackle the aforementioned problem, we develop RITA, a Transformer-

based timeseries analytics tool, which uses a novel attention mechanism, called group attention,
to scale to long timeseries. Our goal is to significantly speed up execution versus prior methods

while sacrificing minimal predictive accuracy.

Leveraging the similarity among long timeseries pieces, RITA chunks the input timeseries into

segments and dynamically clusters the segments into a small number (denoted as 𝑁) of groups.

Segments in the same group possess similar feature embeddings during the current training iteration,

enabling them to approximately share the computation of attention. As the timeseries increases in

length, more sharing opportunities become available. RITA then computes self-attention at a group

level and produces a compressed group attention matrix. In this way, group attention eliminates

both computation and memory bottlenecks in Transformer-style models, and thus more scalable to

long timeseries.

However, making this idea effective and efficient in Transformer architectures is challenging for
several reasons:

• Efficiently producing high quality feature embeddings. RITA computes the attention

matrix at a group level. To preserve the quality of the feature embeddings, it still has to produce

different embeddings for different segments. This is because even if some segments share the

attention score temporally, they may not share the same feature embedding. Using the group

attention matrix, the existing self-attention mechanism will produce only a single feature vector

for each group. A naive solution would be to restore the original attention matrix from the group

attention matrix. However, in this case, we again get an attention matrix with quadratic space

complexity. Because GPUs have limited memory, GPU memory will remain a bottleneck in group

attention.

• The number of groups N. In RITA, the number of groups 𝑁 is a crucial factor that balances

the speedup and quality of attention approximation. A small 𝑁 will lead to a large speedup, but

the approximation errors can also be significant. On the other hand, although a large 𝑁 tends to

produce high-quality approximations, it inevitably slows down the training process. Therefore,

an appropriate 𝑁 is essential to the performance of group attention. However, 𝑁 depends on the

distributional properties of the dataset. Furthermore, like the classical transformer models, RITA

stacks multiple attention layers to produce better embeddings. Ideally, different layers should also

use different values of 𝑁 . In addition, during the model training phase, group attention should use

different values of 𝑁 in different iterations to adapt to the varying feature embeddings. This makes

manually optimizing 𝑁 almost impossible.

• Batch size.Moreover, as we want to dynamically adjust 𝑁 during training, a fixed batch size is

sub-optimal: as 𝑁 decreases, the memory usage of a single sample decreases. This allows a larger

batch size, which (1) makes full use of GPU memory; (2) enables parallelism across the samples.

Thus, RITA should dynamically adjust the batch size as 𝑁 changes.

To address the above problems, we first propose an embedding aggregation strategy and a

customized group softmax function to replace the classical softmax function [59]. Together they

ensure RITA able to directly use the compressed attention matrix to produce different feature

embeddings for different segments. We theoretically show that the embeddings RITA produces in

this way are identical to those produced by first re-storing the original large attention matrix. Thus

RITA produces high-quality embeddings without introducing extra overhead.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 62. Publication date: February 2024.

62:4 Jiaming Liang, Lei Cao, Samuel Madden, Zachary Ives, and Guoliang Li

Second, we design an adaptive scheduler that dynamically decides an appropriate 𝑁 for each

group attention layer during the training process. It starts with a large 𝑁 and iteratively merges

groups that are similar to each other. Guided by an error bound on the approximated self-attention

that users can tolerate, it automatically determines if two groups are mergeable, performingmerging

efficiently in a GPU-friendly way.

Moreover, we propose a learning-based method to model the correlation between the number of

groups 𝑁 and the batch size 𝐵. This model predicts 𝐵 for a given 𝑁 when training RITA. Specifically,

we first sample some 𝑁 values in a reasonable range. For each sampled 𝑁 , we find a batch size that

consumes up to a certain percentage of GPU memory in a cost-efficient way. Using a small set of

mathematical functions as a prior, RITA is able to learn a model with only a few ⟨𝑁, 𝐵⟩ pairs as
ground truth labels.

Our experiments on public timeseries benchmarks and the MGH EEG data [7] confirm that

compared to existing self-attention mechanisms [11, 12, 46, 59, 62], our group attention mechanism

achieves a 63X speedup with much less memory required with comparable or even better accuracy

on various timeseries analytics tasks.

Contributions. The key contributions of this work include:

• Our group attention mechanism reduces the time and space complexity of the self-attention

mechanism with accuracy guarantees, allowing RITA to scale to long timeseries data.

• Guided by an approximation error bound, our adaptive scheduler dynamically adapts the number

of groups and the batch size to the distribution properties of the evolving feature embeddings,

making group attention efficient and easily tunable.

• We conduct experiments on various datasets and analytics tasks, demonstrating that RITA is 4

to 63 times faster than the existing Transformer-based approaches while achieving comparable or

better accuracy when handling long timeseries (length ≥ 2000).

2 BACKGROUND
We provide some background on the canonical self-attention module in the Transformer [59].

Self-attention takes 𝑛 hidden embedding vectors 𝐻 ∈ R𝑛∗𝑑ℎ as input, then projects them to queries

(𝑄), keys (𝐾) and values (𝑉) and performs Scaled-dot Product Attention, which given input hidden

state 𝐻 , is computed by:

𝑄 = 𝐻𝑊𝑄 , 𝐾 = 𝐻𝑊𝐾 ,𝑉 = 𝐻𝑊𝑉 ,𝑂 = 𝐴𝑉 = 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥 (𝑄𝐾
𝑇√︁
𝑑𝑘

)𝑉 (1)

Where𝑊𝑄 ∈ R𝑑ℎ∗𝑑𝑘 ,𝑊𝐾 ∈ R𝑑ℎ∗𝑑𝑘 ,𝑊𝑉 ∈ R𝑑ℎ∗𝑑𝑣 are projection matrices for generating 𝑄,𝐾,𝑉 .

𝑄 ∈ R𝑛∗𝑑𝑘 is also regarded as the packing of 𝑛 query vectors {𝑞1, ..., 𝑞𝑛} with dimension 𝑑𝑘 into

a matrix. 𝐾 ∈ R𝑛∗𝑑𝑘 ,𝑉 ∈ R𝑛∗𝑑𝑣 are regarded as the packing of key vectors {𝑘1, ..., 𝑘𝑛} and value

vectors {𝑣1, ..., 𝑣𝑛} in the same way.

Given a matrix 𝑀 ∈ R𝐿∗𝑛 , the softmax function normalizes 𝑀 to ensure the sum of each row

equals to 1, as shown below.

𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥 (𝑀𝑖, 𝑗) =
𝑒𝑥𝑝 (𝑀𝑖, 𝑗)∑𝑛−1
𝑘=0

𝑒𝑥𝑝 (𝑀𝑖,𝑘)
(2)

3 RITA OVERVIEW
Given a collection of unlabeled timeseries, RITA first pre-trains a Transformer-style model to

produce high quality feature embeddings. This pre-trained model is then used to support various

downstream tasks with minimal modifications to the model architecture, aligned with the design

philosophy of BERT [19].

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 62. Publication date: February 2024.

RITA: Group Attention is All You Need for Timeseries Analytics 62:5

P0Position
Embedding

W1

+ + +
Window

Embedding

+

E0

Raw Timeseries

Time-aware
Convolution

W[CLS] W2

⊗

..... Wn

P1 P2 Pn

.....

E1 E2 En.....

O0 O1 O2 On.....

RITA Encoder

Scale & Input

Fig. 2. RITA architecture

Next, we use an example to show how RITA supports a timeseries query system in Sec. 3.1,

followed by an overview of the RITA model architecture in Sec. 3.2. We will provide a detailed

illustration on how RITA addresses a range of downstream tasks in Sec. 6.

3.1 RITA in TimeseriesQuery Systems
Fig. 1 shows a Seizure Diagnosis System we have been developing for a major US hospital. RITA is

used both in the training stage and the deployment stage. As described in the Introduction, we use

RITA to encode the EEG segments and store the resulting (timeseries, embedding) pairs in a vector

database as (key, value) pairs. This is used to for similarity-based labeling. Thereafter, we train a

classification model by fine-tuning the RITA model and deploy it in the patient monitoring system

to detect seizures at real time. Once a new EEG segment arrives, the system uses the RITA encoder

to embed it into a feature embedding, and thereafter classifies it into one type of seizures.

3.2 Model Architecture
As shown in Fig. 2, RITA consists of two components: (1) Time-aware Convolution Layer and (2)

RITA Encoder.
Time-aware Convolution Layer fills the gap between timeseries and natural language. Despite

their high-level similarity, there is a big gap between timeseries and natural language. First, in

natural language each word, as a discrete semantic unit, has an independent meaning, while

each element in a timeseries is a continuous, numerical value and does not necessarily constitute

an independent event. Furthermore, the input sequences are single-channeled in NLP, but often

multi-channeled in timeseries (i.e., sensor data often consists of several related channels).

RITA leverages the classical convolution [33] strategy to solve this problem. Convolution is

widely used to capture the local structures of an image. We use convolution to chunk one input

timeseries into a sequence of windows and learn the local structure of each window, similar to

the discrete semantic units in natural language. It also discovers the correlations across different

channels, thus naturally solving the multi-channel problem.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 62. Publication date: February 2024.

62:6 Jiaming Liang, Lei Cao, Samuel Madden, Zachary Ives, and Guoliang Li

More specifically, treating a multi-variate timeseries of length 𝑛 and with 𝑚 variables as an

n ×m matrix 𝑇 , RITA uses 𝑑 convolution kernels to chunk 𝑇 into n windows and produce one d-

dimensional embedding per window using the convolution operation [33]. Each convolution kernel

corresponds to a w ×m matrix, where𝑤 defines the number of timestamps that each convolution

kernel covers, identical to the window size in sliding window.

RITA Encoder takes the embeddings of 𝑛 semantic units 𝑋1, 𝑋2, ..., 𝑋𝑛 (𝑋𝑖 ∈ 𝑅𝑑) as input (e.g.
embeddings of 𝑛 windows for a timeseries), then models the correlations between the semantic

units and outputs 𝑌1, ..., 𝑌𝑛 (𝑌𝑖 ∈ 𝑅𝑑) as the context-aware embedding of each unit.

What makes RITA Encoder different from Transformer Encoder is that: at the core of Transformer

Encoder lies self-attention mechanism which incurs a 𝑂 (𝑛2) time complexity and memory usage.

This quadratic cost becomes prohibitive for long timeseries and limits the scalablity of Transformer-

based models. Tomake the attention computation efficient yet high-quality, we replace the canonical

self-attention with our proposed group attention.
Self-supervised Pretraining. Inspired by the “cloze text” pretraining task in NLP, we designed a

mask-and-predict task as the pretraining task for our model. The timeseries is randomly masked

and the model should recover the masked values based on corresponding contextual information.

To be specific, we generate masks on time-stamps, with a mask rate 𝑝 . The timeseries is scaled

to be non-negative and the values across all the channels on the masked timestamps are set to be

-1, an impossible value on normal timestamps. Then the masked timeseries is fed into RITA and the

output representation is translated to the recovered timeseries by a Transpose Convolution layer.

4 GROUP ATTENTION MECHANISM
Group attention, a novel and efficient approximate attention mechanism, addresses the performance

bottleneck of self-attention in the vanilla Transformer. In this section, we first introduce the

framework of group attention and then theoretically establish the bound of its approximation error.

We use examples to explain the group attention mechanism, as depicted in Figure 3.

4.1 The Idea of Group Attention
As periodicity is a natural property of timeseries [64], similar windows frequently occur. Similar

windows result in similar queries/keys for attention computation, bringing opportunities for saving

computation.

As discussed in Sec. 2, 𝐴𝑖 𝑗 , the attention score of window 𝑖 onto window 𝑗 , is determined by the

inner product between the query vector of window 𝑖 and the key vector of window 𝑗 , that is, 𝑞𝑖 · 𝑘 𝑗 .
Given another window 𝑥 , if window 𝑥 has a key vector similar to that of window 𝑗 , that is, 𝑘 𝑗 ≈ 𝑘𝑥 ,
then 𝑞𝑖 · 𝑘 𝑗 ≈ 𝑞𝑖 · 𝑘𝑥 . In other words, 𝐴𝑖 𝑗 ≈ 𝐴𝑖𝑥 when 𝑘 𝑗 ≈ 𝑘𝑥 .

Example 1. As shown in Figure 3 (Part 1), the first and third timeseries windows are notably

similar, consequently yielding akin key vectors (𝑘1 ≈ 𝑘3). In vanilla self-attention (Part 2), this

similarity leads to two closely related columns within the attention matrix, corresponding to key

vectors 𝑘1 and 𝑘3.

This observation inspires our group attention mechanism. That is, we group the windows by

their similarity in keys. Assuming that all windows in the same group have the same attention

score onto another window 𝑘 , we then only compute the attention once by using one single key to

represent this group, for example the centroid of the group of keys. Thus, this saves significant

computation cost.

Better yet, after grouping 𝑛 windows into 𝑁 groups, group attention compresses the attention

matrix from an 𝑛 × 𝑛 matrix to an 𝑛 × 𝑁 matrix. Because 𝑁 (number of groups) tends to be much

smaller than 𝑛 (number of windows) due to the periodicity of timeseries, group attention consumes

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 62. Publication date: February 2024.

RITA: Group Attention is All You Need for Timeseries Analytics 62:7

much less memory than the original self-attention mechanism, successfully eliminating the memory

bottleneck. Note that this minimally impacts quality, as confirmed in our experiments (Sec. 7.2).

 k1, q1, v1

Vanilla Self-Attention

k, q, v ∈ R1*d

-0.43 0.68 -0.38 0.39

0.24 -0.70 0.28 0.11

-0.40 0.64 -0.38 0.37

0.19 -0.14 0.21 0.12

 k1 k2 k3 k4

Dot Product ∈ Rn*n

0.14 0.41 0.14 0.31

0.30 0.12 0.31 0.27

0.14 0.40 0.15 0.31

0.27 0.19 0.28 0.26

Attention Matrix ∈ Rn*n

SoftMax

(row sum = 1)

×
O1
O2
O3
O4

Output ∈ Rn*d

Group Attention

 k(1,3) k2 k4

Dot Product ∈ Rn*N Group Attention Matrix ∈ Rn*N

Group SoftMax

(row sum = 1)

v(1,3)
v2
v4×

O1
O2
O3
O4

Output ∈ Rn*d

Detects Similar Key Embeddings: k1 ≈ k3
Aggregate Key Embeddings: k(1,3) (k1+k3)/2
Aggregate Value Embeddings:

-0.41 0.68 0.39

0.26 -0.70 0.11

-0.39 0.64 0.37

0.20 -0.14 0.12

Column k(1,3) counts twice
0.14 0.41 0.31

0.30 0.12 0.28

0.14 0.40 0.32

0.14 0.40 0.32

0.27 0.20 0.26

Producing Key, Query, Value Embeddings1

2

3

 k2, q2, v2 k3, q3, v3 k4, q4, v4

q1
q2
q3
q4

v1
v2
v3
v4

q1
q2
q3
q4

v(1,3) v1+v3

Fig. 3. Group Attention vs. Vanilla Self-Attention

4.2 Computing the Output Feature Embedding
We now discuss how to efficiently compute the output feature embeddings using the small com-

pressed group attention matrix.

4.2.1 Problem: Producing Embeddings with the Group Attention Matrix
As described in the Background (Sec. 2), once we have acquired the attention matrix 𝐴, canonical

self-attention computes the output embedding 𝑂 as O = AV . Because 𝐴 is an 𝑛 × 𝑛 matrix and

𝑉 is an 𝑛 × 𝑑𝑣 matrix, the matrix product operation still produces an 𝑛 × 𝑑𝑣 matrix 𝑂 . That is,

it produces a 𝑑𝑣 dimensional feature vector for each window. However, our group attention will

produce an 𝑛 × 𝑁 attention matrix 𝐴 , where 𝑁 corresponds to the number of groups. In this case

the matrix product will produce a 𝑁 × 𝑑𝑣 matrix 𝑂 . That is, it produces a feature vector for each

group. However, our goal is to produce different embeddings for different windows, because even if

some windows share the attention score temporally, it does not mean they should have the same

feature embedding.

A Naive Solution. A naive solution would be to restore the full attention matrix 𝐴 from the group

attention matrix 𝐴. For example, given one group composed of𝑤𝑖𝑛𝑖 and𝑤𝑖𝑛 𝑗 , we map its group

attention vector in 𝐴 into two rows that correspond to𝑤𝑖𝑛𝑖 and𝑤𝑖𝑛 𝑗 in 𝐴. However, in this case

we again get a 𝑛 × 𝑛 attention matrix; and GPU memory remains a bottleneck in group attention.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 62. Publication date: February 2024.

62:8 Jiaming Liang, Lei Cao, Samuel Madden, Zachary Ives, and Guoliang Li

4.2.2 Solution: Embedding Aggregation and Group SoftMax
Using an embedding aggregation operation and a group softmax function, RITA produces 𝑛 embed-

dings without restoring the full attention matrix.

Embedding Aggregation. The idea is inspired by the observation on the matrix product operation

O = AV conducted on the fully restored attention matrix 𝐴.

Given an element𝑂𝑖, 𝑗 of𝑂 corresponding to the 𝑗𝑡ℎ dimension of𝑤𝑖𝑛𝑖 ’s feature vector,𝑂𝑖, 𝑗 =𝑎𝑖 ·𝑣 𝑗 ,
where vector ai ∈ Rn denotes the 𝑖𝑡ℎ row of the attention matrix 𝐴 and vector vj ∈ Rn denotes the
𝑗𝑡ℎ dimension of all the 𝑛 feature vectors. Given ai =< a1i , a

2
i , · · · , ani > and vj =< v1j , v

2
j , · · · , vnj >,

𝑂𝑖, 𝑗 =
∑n

k=1 a
k
i v

k
j .

Example 2. As shown in Fig. 3 (Part 3), assume 𝑤𝑖𝑛1 and 𝑤𝑖𝑛3 belong to the same group 𝐺1.

Then 𝑎1𝑖 = 𝑎
3

𝑖 = 𝑎
1

𝑖 , where 𝑎
1

𝑖 ∈ 𝐴 corresponds to the attention of group 𝐺1 onto 𝑤𝑖𝑛𝑖 . Therefore,

𝑎1𝑖 𝑣
1

𝑗 + 𝑎
3

𝑖 𝑣
3

𝑗 = 𝑎
1

𝑖 (𝑣
1

𝑗 + 𝑣
3

𝑗). So we aggregate 𝑣 (1,3) = 𝑣1 + 𝑣3.

As an immediate generalization of the above analysis, if we aggregate up the windows that

belong to the same group and convert the n-dimensional feature vector 𝑣 𝑗 into a 𝑁 -dimensional

group feature vector �̃� 𝑗 beforehand, we could directly use the group attention vector 𝑎𝑖 and the

group feature vector �̃� 𝑗 to compute 𝑂𝑖, 𝑗 .

Using embedding aggregation, RITA is able to produce the feature embedding 𝑂 that is identical

to the embedding 𝑂 produced by using the full attention matrix 𝐴 and the embedding matrix 𝑉 .

Group Softmax Function. In canonical self-attention the attention matrix 𝐴 is computed as 𝐴

= SoftMax (QK
T√
dk
). To compute 𝐴, we have to first compute 𝑄𝐾𝑇 (denoted as 𝑃) which is an 𝑛 × 𝑛

matrix. Normalizing the 𝑃 matrix with softmax produces the attention matrix 𝐴.

Group attention follows the same procedure. However, after grouping keys into𝐾 ,𝑄𝐾𝑇 produces

an 𝑛 × 𝑁 matrix 𝑃 . Due to the non-linearity of the softmax function, applying softmax directly on

𝑃 will result in a group attention matrix 𝐴 from which we are not able to recover a full attention

matrix that is identical to first restoring 𝑃 to 𝑃 and then applying softmax on 𝑃 . The 𝐴 matrix

produced by the latter is desirable, as we want to approximate the original attention matrix as

accurately as possible. However, restoring the small 𝑛 × 𝑁 𝑃 matrix is not memory efficient, as it

will end up with a full 𝑛 × 𝑛 matrix 𝑃 .

To solve the above problems, we introduce a new group softmax function to replace the original

softmax function (Eq. 2).

𝐺𝑟𝑜𝑢𝑝𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥 (𝑃𝑖, 𝑗) =
𝑒𝑥𝑝 (𝑃𝑖, 𝑗)∑𝑁−1

𝑘=0
𝑐𝑜𝑢𝑛𝑡𝑘𝑒𝑥𝑝 (𝑃𝑖,𝑘)

(3)

In Eq. 3, 𝑐𝑜𝑢𝑛𝑡𝑘 represents the number of windows that Group 𝐺𝑘 contains. Compared to the

original softmax, our group softmax considers each group 𝐺𝑘 as 𝑐𝑜𝑢𝑛𝑡𝑘 elements and counts it

𝑐𝑜𝑢𝑛𝑡𝑘 times when summing up the exponential of each group’s 𝑃𝑖,𝑘 . For instance, in Fig. 3 (Part

3), we count the column corresponding to 𝑘 (1,3) twice in GroupSoftMax because there are two

elements (𝑘1, 𝑘3) in this group. In this way, the group softmax function operating on the small 𝑃

matrix will produce exactly the same result to the softmax function operating on the full 𝑃 matrix.

Efficient Implementation. Next, we demonstrate an efficient implementation of the embedding

aggregation operation and group softmax function in Alg. 1. We denote 𝐶𝑁𝑇𝑖 to be the size of the

𝑖𝑡ℎ group, 𝑁 to be the number of groups, r𝑖 to be the representative key of the 𝑖𝑡ℎ group and R to

be the matrix consisting of all r𝑖 , 𝐵𝑁𝐺𝑖 to be the group that k𝑖 belongs to. 𝑄,𝑉 are the packing

matrices of query vectors and value vectors as described in Sec.2. Alg. 1 outputs the packing matrix

𝑂 for new feature emebddings {𝑜1, ..., 𝑜𝑛}, where 𝑜𝑖 corresponds to the feature embedding of𝑤𝑖𝑛𝑖 .

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 62. Publication date: February 2024.

RITA: Group Attention is All You Need for Timeseries Analytics 62:9

Algorithm 1 Efficient Computation of Group Attention

Require: 𝑄,𝑉 , 𝑅,𝐶𝑁𝑇, 𝐵𝐿𝐺
Ensure: 𝑄,𝑉 ∈ R𝑛∗𝑑 ,𝑅 ∈ R𝑁 ∗𝑑 ,𝐶𝑁𝑇 ∈ N𝑁 ,𝐵𝐿𝐺 ∈ N𝑛
1: function group_attention(𝑄,𝑉 , 𝑅)

2: for 𝑖 = 0→ 𝑁 − 1 do
3: �̃�𝑖 ←

∑𝑛−1
𝑗=0 (𝐵𝐿𝐺 𝑗 == 𝑖)𝑣𝑗

4: 𝑃 ← 𝑄𝑅𝑇

5: for 𝑖 = 0→ 𝑛 − 1 do
6: for 𝑗 = 0→ 𝑁 − 1 do
7: 𝑤𝑖,𝑗 ← 𝑒𝑥𝑝 (𝑃𝑖,𝑗)𝐶𝑁𝑇𝑗
8: for 𝑖 = 0→ 𝑛 − 1 do
9: 𝑠𝑖 ←

∑𝑁 −1
𝑗=0 𝑤𝑖,𝑗

10: for 𝑖 = 0→ 𝑛 − 1 do
11: 𝑜𝑖 ←

∑𝑁 −1
𝑗=0

𝑒𝑥𝑝 (𝑃𝑖,𝑗)
𝑠𝑖

�̃�𝑗

12: return𝑂

Lines 2-3 implement the embedding aggregation operation, while Lines 8-11 implement the group

softmax function.

The Correctness Proof of the Group Attention Algorithm. Here we prove that our efficient

group attention algorithm, i.e., Alg. 1, produces the same output feature embedding with the naive

method that has to first restore the big full attention matrix.

Note in group attention’s computation, we use a representative vector to represent all the key

vectors in the 𝑖𝑡ℎ group, thus satisfying the assumption made in Lemma 3.

Lemma 3. Assuming the windows belonging to the same group 𝐺𝑖 have the same key vector, i.e.
𝑘 𝑗 = 𝑟𝑖 (𝑤𝑖𝑛 𝑗 ∈ 𝐺𝑖), then the feature embedding 𝑂 produced by the original self-attention mechanism
is identical to the output of our group attention mechanism implemented in Algorithm 1.

Proof. Denote 𝑘 𝑗 to be the representative vectors of 𝑘 𝑗 , i.e. 𝑘 𝑗 = 𝑟𝑖 = 𝑘 𝑗 (𝑤𝑖𝑛 𝑗 ∈ 𝐺𝑖). Algorithm 1

gives that

�̃�𝑖 =

𝑛−1∑︁
𝑗=0

(𝐵𝐿𝐺 𝑗 == 𝑖)v𝑗 , 𝑃𝑖, 𝑗 = q𝑖 · r𝑗

𝑠𝑖 =

𝑁−1∑︁
𝑗=0

𝑒𝑥𝑝 (𝑃𝑖, 𝑗)𝐶𝑁𝑇𝑗 , �̃�𝑖 =
𝑁−1∑︁
𝑗=0

𝑃𝑖, 𝑗

𝑠𝑖
�̃� 𝑗

(4)

By the canonical self-attention introduced in Sec. 2, we get:

𝑃𝑖, 𝑗 = q𝑖 · kj, 𝐴𝑖, 𝑗 =
𝑒𝑥𝑝 (𝑃𝑖, 𝑗)∑𝑛−1
𝑘=0

𝑒𝑥𝑝 (𝑃𝑖,𝑘)
, o𝑖 =

𝑛−1∑︁
𝑗=0

𝐴𝑖, 𝑗v𝑗 (5)

With 4 and 5, we have

𝑛−1∑︁
𝑗=0

𝑒𝑥𝑝 (𝑃𝑖, 𝑗) =
𝑛−1∑︁
𝑗=0

𝑒𝑥𝑝 (q𝑖 · k𝑗) =
𝑁−1∑︁
𝑗=0

𝑛−1∑︁
𝑥=0

(𝐵𝐿𝐺𝑥 == 𝑗)𝑒𝑥𝑝 (q𝑖 · k𝑥)

=

𝑁−1∑︁
𝑗=0

𝑒𝑥𝑝 (q𝑖 · r𝑗)
𝑛−1∑︁
𝑥=0

(𝐵𝐿𝐺𝑥 == 𝑗) =
𝑁−1∑︁
𝑗=0

𝑒𝑥𝑝 (𝑃𝑖, 𝑗)𝐶𝑁𝑇𝑗 = 𝑠𝑖

(6)

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 62. Publication date: February 2024.

62:10 Jiaming Liang, Lei Cao, Samuel Madden, Zachary Ives, and Guoliang Li

Further,

o𝑖 =
𝑛−1∑︁
𝑗=0

𝐴𝑖, 𝑗vj =
𝑁−1∑︁
𝑗=0

𝑛−1∑︁
𝑥=0

(𝐵𝑁𝐺𝑥 == 𝑗)𝐴𝑖,𝑥v𝑥

=

𝑁−1∑︁
𝑗=0

𝑛−1∑︁
𝑥=0

(𝐵𝐿𝐺𝑥 == 𝑗) 𝑒𝑥𝑝 (q𝑖 · k𝑥)∑𝑛−1
𝑘=0

𝑒𝑥𝑝 (𝑃𝑖,𝑘)
v𝑥

=

𝑁−1∑︁
𝑗=0

𝑒𝑥𝑝 (q𝑖 · rj)∑𝑛−1
𝑘=0

𝑒𝑥𝑝 (𝑃𝑖,𝑘)

𝑛−1∑︁
𝑥=0

(𝐵𝐿𝐺𝑥 == 𝑗)v𝑥 =

𝑁−1∑︁
𝑗=0

𝑒𝑥𝑝 (q𝑖 · rj)∑𝑛−1
𝑘=0

𝑒𝑥𝑝 (𝑃𝑖,𝑘)
𝑣 𝑗

(7)

Combining (4), (6) (7), we have oi =
∑N−1

j=0
P̃i,j
si
ṽj = õi.

This concludes that the output of our group attention is identical to vanilla self-attention’s. □

Time Complexity. The time complexity of Alg. 1 is 𝑂 (𝑛𝑁𝑑) and the space complexity is 𝑂 (𝑛𝑁),
while the time and space complexity of the original self-attention mechanism are𝑂 (𝑛2𝑑) and𝑂 (𝑛2).

4.3 Error Bound
Group attention produces a group attention matrix 𝐴 which approximates the attention matrix 𝐴

produced by the classical self-attention with a bounded error, as shown in Lemma 4.

Lemma 4. Let 𝑅 be the radius of the ball where all key vectors live; �̃�𝑖 be the representative of the
group that contains key 𝑘𝑖 . Let 𝐴 denote the full attention matrix restored from 𝐴. Suppose the distance
between �̃�𝑖 and 𝑘𝑖 (| |̃k𝑖 − k𝑖 | |) satisfies: | |̃k𝑖 − k𝑖 | | ≤ d.

Then ∀ 𝜖 > 1, if d ≤ ln(𝜖)
2R , 1

𝜖
≤ Ai,j

Ai,j
≤ 𝜖

Lemma 4 shows that the error bound 𝜖 of the group attention is determined by the distance 𝑑 .

As discussed in Sec. 5.1, it inspires us to design a strategy to dynamically determine the number of

groups 𝑁 – the most critical parameter of group attention.

Proof. We have

𝑒𝑥𝑝 (𝑃𝑖, 𝑗)
𝑒𝑥𝑝 (𝑃𝑖, 𝑗)

=
𝑒𝑥𝑝 (q𝑖 · k̃𝑗)
𝑒𝑥𝑝 (q𝑖 · k𝑗)

= 𝑒𝑥𝑝 (q𝑖 · (k̃𝑗 − k𝑗))

= 𝑒𝑥𝑝 (| |q𝑖 | | | |̃k𝑗 − k𝑗 | |𝑐𝑜𝑠 (q𝑖 , k̃𝑗 − k𝑗))
(8)

So

𝑒𝑥𝑝 (−𝑑𝑅) ≤
𝑒𝑥𝑝 (𝑃𝑖, 𝑗)
𝑒𝑥𝑝 (𝑃𝑖, 𝑗)

≤ 𝑒𝑥𝑝 (𝑑𝑅) (9)

Then we have:

𝐴𝑖, 𝑗

𝐴𝑖, 𝑗
=

𝑒𝑥𝑝 (𝑃𝑖, 𝑗)∑𝑛
𝑘=1

𝑒𝑥𝑝 (𝑃𝑖,𝑘)
/

𝑒𝑥𝑝 (𝑃𝑖, 𝑗)∑𝑛
𝑘=1

𝑒𝑥𝑝 (𝑃𝑖,𝑘)

=
𝑒𝑥𝑝 (𝑃𝑖, 𝑗)
𝑒𝑥𝑝 (𝑃𝑖, 𝑗)

∑𝑛
𝑘=1

𝑒𝑥𝑝 (𝑃𝑖,𝑘)∑𝑛
𝑘=1

𝑒𝑥𝑝 (𝑃𝑖,𝑘)

(10)

Combining (9) (10), the error is bounded by

𝑒𝑥𝑝 (−2𝑑𝑅) ≤
𝐴𝑖, 𝑗

𝐴𝑖, 𝑗
≤ 𝑒𝑥𝑝 (2𝑑𝑅) (11)

Thus, if d ≤ ln(𝜖)
2R ,

1
𝜖
≤ Ãi,j

Ai,j
≤ 𝜖 . This proves Lemma 4. □

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 62. Publication date: February 2024.

RITA: Group Attention is All You Need for Timeseries Analytics 62:11

4.4 GPU-Friendly Grouping Method
We implement a grouping method that corresponds to K-means clustering [41], because K-means

offers a tight distance bound between each key and its group representative. We design a GPU-

friendly implementation of K-means compliant to the Transformer architecture. The performance

bottleneck of K-means comes from the distance computation between each vector and its center,

that is, |vi − cj | =
√︁
(vi − cj)2, i ∈ [1, n], j ∈ [1,N]. The performance bottleneck is 𝑣𝑖 − 𝑐 𝑗 . Instead,

we use a different formulation: |𝑣𝑖 − 𝑐 𝑗 | = |vi − cj | =
√︁
|vi |2 + |cj |2 − 2vi · cj, i ∈ [1, n], j ∈ [1,N]. In

this formulation, the performance bottleneck is 𝑣𝑖 · 𝑐 𝑗 , which could be implemented as a matrix

product operation, while in GPUs, matrix product is much more efficient than pairwise difference.

5 ADAPTIVE SCHEDULER
Next, we present the adaptive scheduler of RITA which addresses the challenges of determining an

appropriate number of groups 𝑁 and accordingly the batch size 𝐵, as described in Introduction.

Using a dynamic scheduling method we propose, the scheduler automatically determines and

adjusts 𝑁 and 𝐵 based on the distributional properties of the feature embeddings produced over

the iterative training process, while guaranteed to produce high quality attention approximation

that meets the requirement of users.

In Sec. 5.1 we show how RITA automatically determines 𝑁 . Then we introduce in Sec. 5.2 the

learning-based method which given an 𝑁 , immediately predicts a good batch size.

5.1 Dynamically Determining the Number of Groups N
Without loss of generality, we use one group attention module as an example to show how RITA

automatically gets an appropriate 𝑁 . RITA starts with a large 𝑁 and decreases it dynamically. This

is because in the training process of RITA, the feature embeddings produced epoch by epoch tend

to get stabler and stabler and gradually converge [30], thus typically no need to increase 𝑁 .

RITA reduces the number of groups by merging similar groups. Intuitively, given two groups,

we could measure their similarity based on the distance of their centers. If the distance between

their centers is smaller than a distance threshold, then the two groups could be merged. However,

setting an appropriate distance threshold seems hard – as difficult as setting an appropriate 𝑁 .

To solve this problem, RITA leverages the error bound of group attention introduced in Sec. 4.3.

It only requires users to set an error bound 𝜖 , and then uses Lemma 4 to translate 𝜖 to a distance

threshold 𝑑 . We believe this error bound is the most natural knob for users to specify based

on the need of the domain. Compared to setting a distance threshold to indirectly influence the

approximation error, this is more intuitive and accessible. As confirmed in our experiments (Table. 4,

Sec. 7.5.1), RITA works well in a large range of error bound factors. Hence it is not a parameter

that needs careful tuning.

RITA then uses Lemma 5 to determine if merging some given clusters still meets the error bound

threshold 𝜖 .

Lemma 5. Denote 𝑐𝑘 to be the cluster center of 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑘 . Assume the existing grouping satisfies
∀k, max

x∈clusterk
|ck − x | ≤ d , thus satisfying an error bound 𝜖 by Lemma 4. If there exist𝑚 clusters, namely,

𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑘1 , 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑘2 , ..., 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑘𝑚 , satisfying that:

𝑚𝑎𝑥
𝑥∈𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑘𝑖

|𝑐𝑘𝑖 − 𝑐𝑘 𝑗 | + |𝑥 − 𝑐𝑘𝑖 | ≤ 𝑑, 𝑖, 𝑗 ∈ [1,𝑚] (12)

merging them into one cluster still meets the error bound 𝜖 .

Proof. Denote the cluster size of 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑘 to be 𝑛𝑘 . After mergeing, the new center will be:

𝑐′ =
∑𝑚

𝑖=1 𝑛𝑘𝑖 𝑐𝑘𝑖∑𝑚
𝑖=1 𝑛𝑘𝑖

.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 62. Publication date: February 2024.

62:12 Jiaming Liang, Lei Cao, Samuel Madden, Zachary Ives, and Guoliang Li

For ∀𝑖 ∈ [1,𝑚],∀𝑥 ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑘𝑖 , it holds that:

|𝑥 − 𝑐′ | ≤ |𝑥 − 𝑐𝑘𝑖 | + |𝑐𝑘𝑖 − 𝑐
′ | (𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦)

= |𝑥 − 𝑐𝑘𝑖 | + |
∑𝑚
𝑗=1 𝑛𝑘 𝑗∑𝑚
𝑗=1 𝑛𝑘 𝑗

𝑐𝑘𝑖 −
∑𝑚
𝑗=1 𝑛𝑘 𝑗 𝑐𝑘 𝑗∑𝑚
𝑗=1 𝑛𝑘 𝑗

|

= |𝑥 − 𝑐𝑘𝑖 | + |
∑𝑚
𝑗=1 𝑛𝑘 𝑗 (𝑐𝑘𝑖 − 𝑐𝑘 𝑗)∑𝑚

𝑗=1 𝑛𝑘 𝑗
|

=

∑𝑚
𝑗=1 𝑛𝑘 𝑗 (|𝑐𝑘𝑖 − 𝑐𝑘 𝑗 | + |𝑥 − 𝑐𝑘𝑖 |)∑𝑚

𝑗=1 𝑛𝑘 𝑗
≤

∑𝑚
𝑗=1 𝑛𝑘 𝑗𝑑∑𝑚
𝑗=1 𝑛𝑘 𝑗

= 𝑑

(13)

Finding the Mergable Clusters.We formulate the problem of finding mergeable clusters using

graph theory:

(1) each cluster is a node in the graph;

(2) if 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖 and 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑗 satisfy:

𝑚𝑎𝑥
𝑥∈𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖

|𝑐𝑖 − 𝑐 𝑗 | + |𝑥 − 𝑐𝑖 | ≤ 𝑑 , and 𝑚𝑎𝑥
𝑥∈𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑗

|𝑐 𝑗 − 𝑐𝑖 | + |𝑥 − 𝑐 𝑗 | ≤ 𝑑

then there is an undirected edge between 𝑛𝑜𝑑𝑒𝑖 and 𝑛𝑜𝑑𝑒 𝑗 ;

In this scenario, finding the maximal number of mergeable clusters is equivalent to finding the

minimal clique cover in the corresponding graph, which is an NP-hard problem [28]. Such heavy

computation overhead is not acceptable for RITA. We thus offer a simplified solution:

(1) Halve the clusters into two sets 𝑆1, 𝑆2;

(2) If 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖 ∈ 𝑆1 and 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑗 ∈ 𝑆2 satisfy:

𝑚𝑎𝑥
𝑥∈𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖

|𝑐𝑖 − 𝑐 𝑗 | + |𝑥 − 𝑐𝑖 | ≤ 𝑑, 𝑚𝑎𝑥
𝑥∈𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑗

|𝑐 𝑗 − 𝑐𝑖 | + |𝑥 − 𝑐 𝑗 | ≤
𝑑

2

(14)

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑗 is marked.

(3) Decrease the number of clusters by counting the masks in 𝑆2.

The Correctness Proof. In this solution, clusters in 𝑆1 can be regarded as transfer nodes. If (14)

holds for (𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖 ∈ 𝑆1, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑗1 ∈ 𝑆2) and (𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖 ∈ 𝑆1, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑗2 ∈ 𝑆2), respectively, we have,
𝑚𝑎𝑥

𝑥∈𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑗
1

|𝑐 𝑗1 − 𝑐 𝑗2 | + |𝑥 − 𝑐 𝑗1 |

≤ 𝑚𝑎𝑥
𝑥∈𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑗

1

|𝑐 𝑗1 − 𝑐𝑖 | + |𝑐𝑖 − 𝑐 𝑗2 | + |𝑥 − 𝑐 𝑗1 |

≤ 𝑚𝑎𝑥
𝑥∈𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑗

1

|𝑐 𝑗1 − 𝑐𝑖 | + |𝑐𝑖 − 𝑐 𝑗2 | + |𝑥 − 𝑐 𝑗1 | + |𝑥 − 𝑐 𝑗2 | ≤ 𝑑

(15)

Thus (12) holds when merging several clusters in 𝑆2 with one cluster in 𝑆1. As a result, we can

greedily merge clusters in 𝑆2, as illustrated in step(3).

Assume the number of clusters decreases by 𝐷 after merging, we apply a momentum update [49]

on the number of clusters 𝑁 , as is commonly used in machine learning to smooth the changing

of 𝑁 and avoid sample selection bias. To be specific: 𝑁𝑛𝑒𝑤 = 𝛼 (𝑁 − 𝐷) + (1 − 𝛼)𝑁 , where 𝛼 is a

hyper-parameter for momentum.

5.2 Dynamically Determining the Batch Size
When the model architecture and hardware are fixed, the batch size depends on the length of the

timeseries 𝐿 and the average group number 𝑁 among all attention modules. Intuitively, given a

batch size 𝐵 and the number of groups 𝑁 , if we could precisely calculate its GPU memory usage, it

would be straightforward to determine the appropriate batch size based on the GPU memory size

and 𝐿. However, this is infeasible due to the following: (1) RITA’s dynamic grouping leading to

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 62. Publication date: February 2024.

RITA: Group Attention is All You Need for Timeseries Analytics 62:13

varying deep learning computational graphs [1], and (2) the utilization of memory management

techniques by the deep learning infrastructure [3].

Therefore, we propose a learning-based method to predict the batch size. It models the correlation

between the length of the timeseries 𝐿, the number of groups 𝑁 , and the batch size 𝐵 based on the

actual GPU memory consumed by some sampled batches, which we efficiently measure during the

training process.

RITA samples several (𝐿𝑖 , 𝑁 𝑖) pairs and estimate a proper batch size for each pair. Treating these

pairs as ground truth labels, we use function fitting [22] to learn the batch size predicting function

B = f (L,N), where B is a function of two variables 𝐿 and 𝑁 .

More specifically, given a user-defined timeseries maximal length 𝐿𝑚𝑎𝑥 , we randomly sample

integral points (𝐿𝑖 , 𝑁𝑖) from plane {1 ≤ 𝐿 ≤ 𝐿𝑚𝑎𝑥 , 1 ≤ 𝑁 ≤ 𝐿}. Then we use a binary search based

algorithm to find the maximal batch size 𝐵𝑖 that consumes less than 90% available GPU memory,

aiming to avoid wasting GPU memory and the risks of out of memory (OOM).

Next, we discuss how to learn the prediction function using these sampled (𝐿𝑖 , 𝑁𝑖 , 𝐵𝑖).
Learning the Prediction Function. We apply curve fit from SciPy [60] as the function fitting

tool to fit the two-variable function 𝐵𝑖 = 𝑓 (𝐿𝑖 , 𝑁𝑖) on plane {1 ≤ 𝐿 ≤ 𝐿𝑚𝑎𝑥 , 1 ≤ 𝑁 ≤ 𝐿}.
We observe that applying one function to the whole plane incurs a huge estimation error. So

we develop a dynamic-programming (DP) method to divide the plane into several sub-planes and

apply a distinct function to each sub-plane respectively, i.e., Alg. 2. It is optimal in minimizing the

total estimation error on all sub-planes.

With the learned prediction function 𝑓 , we can estimate a proper batch size for any (𝐿, 𝑁) during
training, even if it is not seen in the sampled (𝐿𝑖 , 𝑁𝑖) pairs.

Algorithm 2 Dynamic Programming for Plane Division

Require: 𝐿𝑖 , 𝑁𝑖 , 𝐵𝑖 , 𝐿𝑚𝑎𝑥

Ensure: 1 ≤ 𝐿𝑖 ≤ 𝐿𝑚𝑎𝑥 , 1 ≤ 𝑁𝑖 ≤ 𝐿𝑖
1: function cost(S)

2: if |𝑆 | < 𝑀 then return +∞
3: 𝐿, 𝑁 , 𝐵 ← 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑆

4: 𝑓 ← 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓 𝑖𝑡𝑡𝑖𝑛𝑔 (𝐵 |𝐿, 𝑁)
return 𝐸 (𝐵, 𝐿, 𝑁 | 𝑓)

5: function dynamic_programming(𝐿𝑖 , 𝑁𝑖 , 𝐿𝑚𝑎𝑥)

6: for 𝑙1 = 1→ 𝐿𝑚𝑎𝑥 do
7: for 𝑙2 = 1→ 𝑙1 do
8: for 𝑛 = 1→ 𝑙1 do
9: 𝑆 ← 𝑝𝑜𝑖𝑛𝑡𝑠 𝑠𝑒𝑡 𝑖𝑛 {𝑙2 ≤ 𝐿 ≤ 𝑙1, 𝑁 ≤ 𝑛}
10: 𝑔 (𝑛) ← 𝐶𝑂𝑆𝑇 (𝑆)
11: for 𝑖 = 1→ 𝑛 do
12: 𝑆 ← 𝑝𝑜𝑖𝑛𝑡𝑠 𝑠𝑒𝑡 𝑖𝑛 {𝑙2 ≤ 𝐿 ≤ 𝑙1, 𝑖 ≤ 𝑁 ≤ 𝑛}
13: 𝑔 (𝑛) ←𝑚𝑖𝑛 (𝑔 (𝑛), 𝑔 (𝑖) +𝐶𝑂𝑆𝑇 (𝑆))
14: 𝑓𝑙2,𝑙1 ← 𝑔 (𝑙1)
15:

16: for 𝑙 = 1→ 𝐿𝑚𝑎𝑥 do
17: 𝑑𝑝 (𝑙) ← 𝑓 (1, 𝑙)
18: for 𝑖 = 1→ 𝑙 do
19: 𝑑𝑝 (𝑙) ←𝑚𝑖𝑛 (𝑑𝑝 (𝑙), 𝑑𝑝 (𝑖) + 𝑓 (𝑖, 𝑙))

return 𝑑𝑝 (𝐿𝑚𝑎𝑥)

TheOptimality Proof of the PlaneDivisionAlgorithm .Wedescribe Alg. 2 and intuitively show

its optimality. We assume that Scipy [60] learns an optimal function in Line 4 so that function COST

gives the optimal estimation error when fitting the points in set 𝑆 . When fitting very few points,

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 62. Publication date: February 2024.

62:14 Jiaming Liang, Lei Cao, Samuel Madden, Zachary Ives, and Guoliang Li

we assign an infinite cost to prevent a biased fitting function (Line 2). 𝑔(𝑛) denotes the minimal

estimation error for points in sub-plane {𝑙2 ≤ 𝐿 ≤ 𝑙1, 𝑁 ≤ 𝑛}. In Lines 11-13, we enumerate all

possible ways of cutting {𝑙2 ≤ 𝐿 ≤ 𝑙1, 𝑁 ≤ 𝑛} horizontally into two sub-plane {𝑙2 ≤ 𝐿 ≤ 𝑙1, 𝑁 ≤ 𝑖}
and {𝑙2 ≤ 𝐿 ≤ 𝑙1, 𝑖 ≤ 𝑁 ≤ 𝑛} by iterating 𝑖 from 1 to n. Choosing the cutting strategy that minimizes

estimation error gets us a 𝑔(𝑙1) with minimal estimation error for sub-plane {𝑙2 ≤ 𝐿 ≤ 𝑙1, 𝑁 ≤ 𝑙1},
which is recorded as 𝑓𝑙1,𝑙2 in Line 14. 𝑑𝑝 (𝑙) denotes the minimal estimation error for sub-plane

{𝐿 ≤ 𝑙}. We enumerate all the possible ways of cutting {𝐿 ≤ 𝑙} vertically into two sub-plane {𝐿 ≤ 𝑖}
and {𝑖 ≤ 𝐿 ≤ 𝑙} by iterating 𝑖 from 1 to 𝑙 (Line 17-19). Finally, we have the minimal estimation

error for the whole plane as 𝑑𝑝 (𝐿𝑚𝑎𝑥). Based on the above discussion, this algorithm guarantees to

not miss any better solution, hence optimal.

6 SUPPORTING DOWNSTREAM TASKS
RITA supports a variety of downstream tasks. In this section, we show that with minimal modifica-

tion RITA can effectively support classification, imputation and forecasting tasks. Other unsuper-

vised tasks such as similarity search or clustering are naturally supported by extracting feature

embeddings from RITA.

6.1 Classification
To classify timeseries, we input timeseries to the model as described in Sec. 3 and attach a special to-

ken [CLS] as the first input embedding. [CLS]’s embedding acts as the embedding for the entire time-

series, and the output representation of [CLS] is fed into a classifier: y = Softmax (WclsZ[CLS] + Bcls),
where 𝑍 [𝐶𝐿𝑆] ∈ R𝑑 is the output representation of [CLS], C is the number of classes, and

Wcls ∈ RC×d, Bcls ∈ RC are learnable parameters for classification task. The result vector 𝑦 ∈ R𝐶
represents the possibility that the input timeseries belongs to each class. We apply Cross Entropy

as the loss function for the classification task [16].

6.2 Imputation
Timeseries are mainly generated by sensors, a common problem of which is missing values. This

becomes a challenge when many downstream analytics require the missing values to be recovered.

The recovering task is imputation, a data cleaning task.

Denote the real timeseries as𝑇𝑟 ∈ R𝑡×𝑚 , the observed timeseries withmissing values as𝑇𝑜 ∈ R𝑡×𝑚 ,
and the set of missing values’ positions as𝑀 . We scale the values of all timeseries to non-negative

and use a special value (-1) to indicate missing values:

𝑇𝑜 (𝑖, 𝑗) =
{
−1 (𝑖, 𝑗) ∈ 𝑀
𝑇𝑟 (𝑖, 𝑗) (𝑖, 𝑗) ∉ 𝑀

(16)

𝑇𝑜 is fed into the RITA as input, and the output representations are concatenated and fed

into a Transpose Convolution layer which decodes the output embedding vectors from hidden

space to timeseries values, corresponding to the convolution operation in the input stage, i.e.,

Y = TransposeCNN (Z1 ⊕ Z2 ⊕ ... ⊕ Zn), where 𝑌 ∈ R𝑡×𝑚 is the recovered timeseries, and 𝑍𝑖 ∈ R𝑑
is the output of each position. Here Mean Square Error is chosen as the loss function [58]: 𝐿 =
1

|𝑀 |
∑
(𝑖, 𝑗) ∈𝑀 (𝑌 (𝑖, 𝑗) −𝑇𝑟 (𝑖, 𝑗))2.

6.3 Forecasting
Forecasting can be regarded as a special case of imputation, in which all missing values are at the

end of timeseries. Similarly to the imputation task, we scale the timeseries to non-negative and use

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 62. Publication date: February 2024.

RITA: Group Attention is All You Need for Timeseries Analytics 62:15

a special value (-1) to indicate the values to be predicted:

𝑇𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 (𝑖, 𝑗) =
{
𝑇𝑟𝑒𝑎𝑙 (𝑖, 𝑗) 𝑖 ≤ 𝑡𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(17)

Where 𝑡𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 is the observed timestamp. Then the output representations are fed into a Transpose

Convolution layer using Mean Squared Error as loss function, as described above.

6.4 Other Unsupervised Tasks
RITA naturally supports other unsupervised tasks, such as similarity search and clustering [29,

36, 37], by producing the embedding of one timeseries (output representation of the special token

[CLS]). Clustering can be performed on the embeddings with flexible choice of distance metrics.

Similarly, a high dimensional similarity search system [26, 27, 44] can be built on the embeddings,

i.e., the time series query system we show in Fig. 1 and evaluate in Sec. 7.6.

7 EVALUATION
Our experimental study focuses on the following questions:

1. Effectiveness and efficiency: How does RITA compare with other Transformer-based

methods and traditional timeseries representation learning methods in accuracy and efficiency?

2. Similarity Search: How well does RITA in supporting time series similarity search?

3. Ablation Study: How do the key techniques of RITA work?

7.1 Experimental Setup
Datasets. We evaluate RITA on classification, imputation, and similarity search tasks using 6

multi-variate and 3 uni-variate timeseries datasets.

• WISDM [63] is a popular multivariate timeseries dataset generated from the accelerometer in

the mobile phone. The subjects performed 18 daily activities (e.g. walking, jogging). The dataset

was collected from 51 subjects and the sampling rate is 20 Hz.

• HHAR dataset [53] contains sensing data of accelerometer collected from 9 users performing 5

activities with 12 different smartphones (varying in sampling rate). This increases the complexity

of the task and thus can test the model’s robustness.

• RWHAR RealWorld HAR dataset [55] covers 15 subjects performing 8 locomotion-style activities.

Each subject wears the sensors for approximately ten minutes. The sampling rate is 50 Hz.

• ETT [71] dataset comprises 2 years of 2 electrical transformers’ data collected from 2 stations,

including the oil temperature and six features of the power load. We use ETTm1 where each

timeseries lasts 15 minutes. We pre-process and split the data as in prior work [46].

• ECG dataset [39] consists of 10,000 EEG recordings for arrhythmia classification. Each recording

has an uncertain length ranging from 6 to 60 seconds sampled at 500 Hz. The ECG recordings corre-

spond to 9 types of heart problems such as atrial fibrillation (AF) and premature atrial contraction

(PAC), etc.

• MGH [7] is an EEG dataset collected by Mass. General Hospital. Each timeseries corresponds

to the EEG data observed from one patient during their stay in ICU for a couple of days. The EEG

monitoring produced data with 20 channels. The sampling rate is 200 Hz, so it produces very long

timeseries.

• WISDM*/HHAR*/RWHAR* are three univariate datasets derived by selecting one channel

fromWISDM/HHAR/RWHAR.
Training/Validation Data Generation. We apply a sliding window on the raw timeseries to get

training/validation samples. The size of the sliding window is set to 200 on small datasets (WISDM,

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 62. Publication date: February 2024.

62:16 Jiaming Liang, Lei Cao, Samuel Madden, Zachary Ives, and Guoliang Li

HHAR, RWHAR, ETT), 2000 on medium size dataset (ECG), and 10,000 on the large dataset (MGH).

Table 1 shows the statics of the generated datasets. They are randomly split into training/validation

set in a proportion of 0.9/0.1. In “pretraining + few-label finetuning” scenario, we use 100 labeled

data per class for finetuning. We guarantee training set does not overlap with the validation set.

Dataset Train. Size Valid. Size Length Channel Classes

WISDM 28,280 3,112 200 3 18

HHAR 20,484 2,296 200 3 5

RWHAR 27,253 3,059 200 3 8

ETT 34,265 11,425 200 7 N/A

ECG 31,091 3,551 2000 12 9

MGH 8,550 950 10000 21 N/A

Table 1. The statistics of the datasets

Alternative Methods. We compare RITA against the SOTA deep learning-based representa-

tion learning methods, including the Transformer based TST [70] and the non-Transformer

method TS2VEC [68]. To evaluate our group attention (referred to as Group Attn.), we de-

velop three baselines by replacing the group attention component in RITA with the classic vanilla

Self-Attention [59](referred to as Vanilla) and two SOTA methods that reduce the complexity of

self-attention by approximation in NLP, namely, Performer [11] (referred to as Performer) and
Linformer [62] (referred to as Linformer). Similar to our proposed Group Attn., Vanilla, Performer,

Linformer all use RITA’s time-aware convolution operation (Sec. 3) to turn timeseries segments

into input feature vectors. Finally, we compare against the SOTA Transformer-based methods for

timeseries forecasting, Triformer [12] and PatchTST [46], wherein their decoders are substituted

with output networks for the downstream tasks.

We also compare Group Attn. against GRAIL [47], which is the SOTA of the non-deep learning

methods for timeseries representation learning. GRAIL supports classification tasks by feeding the

learned representations into a Support-Vector Machine [15] or K-Nearest Neighbor [20] classifier.

Note GRAIL only targets uni-variate timeseries and cannot support imputation tasks.

Experiment Methodology. We focus on three downstream tasks:

(1) Classification. First, we train Group Attn. and the baselines with full labels from scratch to

test the effectiveness of RITA framework and the approximation quality of our group attention.

Second, to measure the effectiveness of self-supervised pretraining, we evaluate the accuracy of

training on a few labeled timeseries with/without pretraining on large scales of unlabeled timeseries.

We train the model on the cloze pretraining task with a mask rate 𝑝 = 0.2. Then we train two

classification models using the finetuning set, either based on the pretrained version or from scratch.

(2) Imputation. We run the imputation task on the datasets used in classification as well as the

large unlabeled MGH dataset. We measure the mean square error and absolute imputation error.

To get timeseries with missing values, we randomly mask the values with an expected mask rate of

𝑝 = 0.2. The masked values are replaced with a special value.

(3) Similarity Search. We run similarity search (𝑘NN) task on the ECG dataset, which is the

longest labeled dataset. We evaluate both query execution time and precision. The query execution

time measures the inference cost of each feature embedding method. The query precision measures

the percentage of the nearest neighbors that belong to the same class with the querying object,

representing the quality of the produced embeddings.

To evaluate the efficiency of Group Attn., the total time of forward computation, backward

propagation, and grouping are measured for all methods in all the experiments.

We first compare against the Transformer-based methods and TS2VEC on multi-variate datasets

(sec. 7.2, 7.3), then compare against the non-deep learning method GRAIL on uni-variate datasets

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 62. Publication date: February 2024.

RITA: Group Attention is All You Need for Timeseries Analytics 62:17

200 200 200 2000

A
cc

ur
ac

y

Tr
ai

ni
ng

 T
im

e/
se

c

200 200 200 2000
Fig. 4. Full-label classification results (multi-variate data).

Dataset WISDM HHAR RWHAR ECG

Pretrain Size 62,231 68,294 63,599 561,358

Method Scratch Pre. Scratch Pre. Scratch Pre. Scratch Pre.

TST [70] 49.13% 50.03% 72.56% 75.30% 69.46% 80.41% 20.98% 27.99%

TS2VEC [68] 54.30% 62.01% 69.03% 82.54% 79.41% 85.01% 39.38% 39.94%

Triformer [12] 34.28% 40.61% 71.51% 72.21% 76.23% 82.73% 22.74% 29.53%

PatchTST [46] 44.63% 50.51% 71.47% 73.12% 60.73% 60.83% 29.82% 32.61%

Vanilla 66.16% 75.89% 75.60% 81.35% 85.68% 91.14% 42.05% 46.16%

Performer 66.09% 73.97% 76.52% 80.70% 87.54% 91.33% 43.34% 45.58%

Linformer 50.12% 67.44% 65.94% 76.52% 81.03% 86.33% 27.19% 31.34%

Group Attn. 62.56% 75.06% 76.17% 82.62% 86.13% 89.63% 42.58% 46.39%

Table 2. Pretrain + few-label finetuning results. Metrics: Accuracy. The best results are marked with bold.

(sec. 7.4). Note that TS2VEC[68] doesn’t support imputation tasks. It is thus not reported in this set

of experiments.

We report the median result among 5 random seeds and data splits as here we observe a low

standard error.

Configuration. All models were trained on an NVIDIA Tesla V100 16GB GPU. All methods are

optimized with AdamW [42], with the starting learning rate and weight decay parameter set to

1𝑒−4. In full-label training scenario, we train the models for 100 epochs. In “pretraining + few-label

finetuning scenario”, as the pretrained models require fewer epochs to converge [70], we train the

model for 50 epochs. The baselines use a maximal batch size within GPU’s capacity during training:

per [21], a larger batch size can expedite training without compromising accuracy. Therefore, with

this setting, the baselines are shown with their best possible results.

As for model hyper-parameter setting, RITA and the baselines use a Transformer structure

balancing Vanilla ’s accuracy and efficiency: 8-layer stack of 2-head attention with hidden vectors

in dimension of 64. Convolution kernel size is set to 5 by default. We set the error bound threshold

(𝜖 , Sec. 5.1) of Group Attention to 2, as it balances the accuracy and the efficiency in general on all

datasets based on our ablation study (Table 4). Because Linformer requires the users to set the sizes

of projection matrix, in different settings we choose an accuracy-efficiency balancing one among

{64,128,256,512}. For Triformer, we enumerate the settings given by the authors [12] and choose the

setting that balances accuracy and efficiency. For PatchTST, similarly, we choose an appropriate

patch size among {16,64,256}, per the suggestion of the authors.

7.2 Classification
In this section, we evaluate the effectiveness and efficiency of RITA on classification tasks. We first

compare RITA and the baselines by training them with full labels from scratch. We then show how

pretraining RITA increases the accuracy on the downstream tasks.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 62. Publication date: February 2024.

62:18 Jiaming Liang, Lei Cao, Samuel Madden, Zachary Ives, and Guoliang Li

Dataset WISDM HHAR RWHAR ETT ECG MGH

Length 200 200 200 200 2,000 10,000

Method MSE Time/s MSE Time/s MSE Time/s MSE Time/s MSE Time/s MSE Time/s

TST [70] 13.30 150.3 1.085 78.2 0.0882 83.9 0.1661 181.8 0.0905 696.3 N/A N/A

Triformer [12] 11.20 163.2 2.468 87.9 0.4580 97.5 0.0777 197.2 0.0905 977.9 0.00079 2936

PatchTST [46] 5.568 132.7 0.7337 69.6 0.1330 78.0 0.0552 160.5 0.0101 235.8 N/A N/A

Vanilla 3.240 178.1 0.2968 97.4 0.0478 108.1 0.0530 215.5 0.0037 857.9 N/A N/A

Performer 3.449 162.6 0.2980 82.6 0.0489 89.1 0.0532 196.7 0.0033 270.2 0.00014 356.2

Linformer 3.852 141.9 0.3198 81.1 0.0572 98.4 0.0601 171.6 0.0035 291.38 0.00088 404.9

Group Attn. 3.277 136.7 0.2974 73.3 0.0478 81.3 0.0535 165.4 0.0038 164.36 0.00042 54.4

Table 3. Imputation results (multi-variate data). Metrics: MSE. The best results are marked with bold.

7.2.1 full-label training (Multi-variate classification)
Results shown in Figure 4 get us the following observations:

(1) Group Attn.’s advantage over TST. On all four datasets, Group Attn. outperforms TST

in both accuracy and training time. In particular, Group Attn. outperforms TST by 49 percentage

points (88.48% vs 39.93%) and is 3 times faster in training time per epoch (236.8s vs 731.0s) on the

ECG dataset.

Three deficiencies may cause TST’s poor performance on the long timeseries. Firstly, TST

concatenates the output embedding vector of each time stamp, then uses a linear classifier to do

classification on the concatenated vector. When the timeseries is long, the linear classifier has so

many parameters that it tends to overfit easily. Secondly, TST replaces Layer Normalization in vanilla

Transformer with Batch Normalization. When the timeseries is long, it can only accommodate a

small number of timeseries in each batch, leading to bias in Batch Normalization. Thirdly, TST uses

vanilla self-attention, which causes quadratic complexity.

(2) Group Attn.’s advantage over TS2VEC. Group Attn. is consistently more accurate than

TS2VEC across the four datasets. In particular, on the ECG dataset which contains long timeseries –

the scenario we focus on, Group Attn. outperforms it in accuracy by 28% (88.48% vs 59.17%), while

using less training time per epoch. This can be attributed to our backbone model (Transformer)

which effectively captures long-range correlations.

(3) Group Attn.’s advantage over Vanilla. Vanilla computes the attention scores precisely.

Thus it is expected to work well. However, Group Attn. outperforms Vanilla on WISDM (87.50% vs

86.95%) and is very close to it on other 3 datasets. This suggests that group attention’s approximation

quality is good.

Group Attn. is more scalable than Vanilla Self-Attention. When the series length is 200 (WISDM,

HHAR, RWHAR), Group Attn. requires 25% less training time on average.When the length increases

to 2,000 (ECG), Vanilla takes over 15 minutes per epoch, about 4 times slower than Group Attn..

Vanilla fails on the long MGH data when the length reaches 10,000 due to out of GPU memory.

(4) Group Attn.’s advantage over other efficient attention mechanisms. Group Attn. is

more accurate than Performer and Linformer on 3 out of 4 datasets. Although Linformer works

slightly better than Group Attn. on the ECG dataset (90.37% vs 88.84%), it is the worst in all other

cases compared to any other RITA-based methods. In the meantime, Group Attn. is always faster

than Performer and Linformer on all 6 multi-variate datasets, thus a win-win.
Group Attn. significantly outperforms PatchTST and Triformer in classification accuracy. This

is because these two methods are tailored for timeseries forecasting, and the feature embeddings

produced by their specialized designs may have adverse effects on other timeseries analytical

tasks, as discussed in related work section. Moreover, Group Attn. is 1.3/4.4 times faster than

PatchTST/Triformer on long timeseries, e.g., on the ECG dataset, because Group Attn. has more

sharing opportunities when processing long timeseries.

7.2.2 Pretraining + few label finetune (multi-variate classification)
The results shown in Table 2 get us the following observation:

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 62. Publication date: February 2024.

RITA: Group Attention is All You Need for Timeseries Analytics 62:19

(1) Pretraining is effective. Pretraining always leads to better accuracy than training with a

few labels from scratch. In particular, on WISDM data all the methods using RITA architecture

increase the accuracy by at least 10%. This is impressive considering we do not have a very large

unlabeled pre-training set to use.

(2) Group Attn.’s advantage over TST and TS2VEC. On the four classification datasets, our

Group Attn. significantly outperforms TST by 15 percentage points on average, and outperforms

TS2VEC by 6 percentage points.

(3) Group Attention’s advantage over other attention mechanisms. Group Attn. is better

than Performer and Linformer on 3 out of 4 datasets. When compared to Vanilla, Group Attn. is

better on HHAR and ECG, and comparable on the other two, further confirming its high quality on

approximation. Further, we notice that Linformer struggles in this setting: in average its accuracy is

worse than Vanilla by 8.22% and Group Attn. by 8.01%. This is because the low-rank projection op-

eration introduces extra model parameters, making Linformer more easily overfit, while overfitting

is especially harmful when there are only a few labeled training samples.

Triformer and PatchTST, the two timeseries forecasting methods have an accuracy much (34%)

lower than Group Attn., for a similar reason to what we have discussed in Sec. 7.2.1.

7.3 Imputation
In this section, we compare our group attention and the baselines on imputation tasks, a typical

data cleaning task in data management. We first show the results on all the 6 datasets in Sec. 7.3.1.

We then vary the length of the timeseries on the MGH dataset to show group attention’s scalability

on long timeseries in Sec. 7.3.2.

7.3.1 Full-dataset training (Multi-variate imputation)

Similar to classification tasks, the results of imputation tasks (Table 3) show that Group Attn.

consistently outperforms the baselines in training time while achieving comparable/better Mean

Square Error (MSE). On the large dataset MGH (length = 10,000), TST, Vanilla and PatchTST fail

due to out of memory (OOM) errors. Methods using RITA framework (Group Attn., Performer,

Linformer) all achieve very low MSE and thus are highly accurate. Among them Linformer is the

worst. The accuracy of Triformer and PatchTST in general is much lower, because they target

forecasting task rather than generating high quality feature embeddings to support various tasks.

Here we observe that the longer the timeseries, the larger the speedup is. On the medium

sized ECG dataset with a length of 2,000, Group Attn. has a speedup of 5.23/1.65/1.77/5.96/1.43 com-

pared to Vanilla/Performer/Linformer/Triformer/PatchTST. When the length increases to 10,000,

the speedup on the MGH dataset increases to 6.59/7.48/54.37 compared to Performer/Linformer/Tri-

former (Vanilla,TST and PatchTST failed due to out of memory) on imputation task (Table. 3). This

is because when the length of the timeseries gets longer, Group Attn. gets more opportunities to

find windows with similar properties. Note Triformer is very slow on long series (length = 10,000),

because it involves a lot of sequential computation and thus cannot benefit from GPUs.

Even on the short WISDM, HHAR, RWHAR, and ETT datasets, Group Attn. still consistently

outperforms all other methods except PatchTST. This confirms that it fully leverages the similarity

among the timeseries windows, while not introducing much overhead. Although PatchTST has

comparable speed with Group Attn. on short series, it is much slower on the longer ECG dataset

(length = 2000) and fails on the very long EEG data (length = 10,000). This is because it concatenates

many embeddings to form a very long embedding before making prediction, thus consuming much

more GPU memory. This shows PatchTST does not scale to long series.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 62. Publication date: February 2024.

62:20 Jiaming Liang, Lei Cao, Samuel Madden, Zachary Ives, and Guoliang Li

M
SE

2000 4000 6000 8000 100002000 4000 6000 8000 10000

Tr
ai

ni
ng

 T
im

e/
se

c

Fig. 5. Varying the lengths of timeseries.

7.3.2 Training time: Varying the Length
In this experiment, we truncate the original MGH timseries into sequences with the lengths at

2000/4000/6000/8000/10000, and compare Group Attn. against Vanilla and other attention mecha-

nisms. Vanilla cannot handle sequences longer than 8000.

The results in Fig. 5 again show that the longer the timeseries, the larger the speed up. With compara-

ble or better MSE, Group Attn. outperforms Vanilla/TST/PatchTST/Triformer/Performer/Linformer

by 63/49/45.9/54.3/6.5/7.4x. Although PatchTST is fast on short series (length = 200), its training

time increases very fast as the length increases and fails eventually when reaching 10,000. Moreover,

as the length increases from 2000 to 10000, the training time of Group Attn. only increases from

31.2 seconds to 54.4 seconds per epoch. The reason is that as the timeseires becomes longer, there

are more grouping opportunities because of the similarity of the timeseries segments.

7.4 Comparison to Non-deep Learning Methods

A
cc

ur
ac

y

Tr
ai

ni
ng

 T
im

e/
se

c

(a) (b)
Fig. 6. Comparison to non-deep learning method (uni-variate data).

We compare against GRAIL, the SOTA of non-deep learning timeseries representation learning.

We use the three uni-variate datasets, because GRAIL only targets uni-variate timeseries. Fig. 6

demonstrates that on all 3 datasets RITA significantly outperforms GRAIL in accuracy by 45, 16, and

21 percentage points because of the expressive power of Transformer. Moreover, the GPU-friendly

design of RITA makes it at least 2× faster than GRAIL in training time.

7.5 Ablation Study
7.5.1 Adaptive Scheduler
To evaluate the effectiveness of RITA’s adaptive scheduler (denoted as Dynamic) (Sec. 5), we
compare it against (1) baseline Fixed: a fixed group number 𝑁 ; (2) baseline Heuristic: if the
validation loss gets lower than ever after the current epoch, we consider that the current 𝑁 is

sufficiently large for the current training stage, and set 𝑁𝑛𝑒𝑤 to 𝑁 ∗𝐷𝑒𝑐𝑎𝑦_𝑟𝑎𝑡𝑒 for the next epoch.
Note 𝑁 ∗ 𝐷𝑒𝑐𝑎𝑦_𝑟𝑎𝑡𝑒 is smaller than 𝑁 , because we observe that the number of groups typically

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 62. Publication date: February 2024.

RITA: Group Attention is All You Need for Timeseries Analytics 62:21

should decrease gradually. We vary 𝑁 for Fixed, 𝐷𝑒𝑐𝑎𝑦_𝑟𝑎𝑡𝑒 for Heuristic, and the error bound

threshold 𝜖 used by RITA.

From the results in Table 4 we get the following observations:

(1) Adaptive Scheduler is better than the baselines. Training with Adaptive Scheduler

achieves better or comparable performance compared to the best performing 𝑁 or 𝐷𝑒𝑐𝑎𝑦_𝑟𝑎𝑡𝑒 .

For 𝐹𝑖𝑥𝑒𝑑 , on the MGH dataset, dynamic scheduler always achieves better accuracy and is much

faster compared to fixed 𝑁 . On the ECG dataset, although fixed 𝑁 is slightly better than adaptive

scheduler in accuracy when setting the 𝑁 as 512, it runs much slower than adaptive scheduler. For

𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 , we have similar observations: on ECG dataset, dynamic scheduler consistently achieves

better accuracy than 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 . On MGH dataset, dynamic scheduler achieves comparable MSE

with less training time. Note that manually finding the best 𝑁 or 𝐷𝑒𝑐𝑎𝑦_𝑟𝑎𝑡𝑒 that balances the

accuracy and running time requires careful tuning, while our adaptive scheduler does not need any

tuning.

(2) Adaptive Scheduler is tuning free. It is robust on both accuracy and running time when

𝜖 varies, while the results of fixed 𝑁 vary significantly when the value of 𝑁 changes. Therefore,

Adaptive Scheduler frees the users from tuning the 𝜖 threshold, while it is hard to manually find an

appropriate 𝑁 or 𝐷𝑒𝑐𝑎𝑦_𝑟𝑎𝑡𝑒 for a given dataset.

Dataset Task Scheduler Parameter Metric Time

ECG Class.

Dynamic

1.5 88.34% 292.5

2 88.48% 236.8

3 87.83% 216.8

Fixed

64 87.50% 255.2

128 88.96% 297.2

256 88.82% 414.1

512 90.03% 662.6

1024 88.65% 873.7

Heuristic

0.8 85.41% 240.36

0.9 86.28% 253.57

MGH Imput.

Dynamic

1.5 0.00041 60.7

2 0.00040 57.9

3 0.00042 54.4

Fixed

128 0.00054 128.6

256 0.00053 190.2

512 0.00049 240.8

1024 0.00046 323.3

Heuristic

0.8 0.00041 102.0

0.9 0.00040 104.0

Table 4. Adaptive Scheduling vs Baseline (Fixed N/Heuristics)

Pretrain Data size Few-label Accuracy

N/A 62.56%

12,446 72.94%

24,892 72.78%

37,338 74.10%

49,784 74.22%

62,231 75.06%

Table 5. RITA Pretraining: increasing sizes of pretrain set.

7.5.2 The Sizes of the Pretraining Data
Next, we evaluate how the number of unlabeled data influences the effectiveness of pretraining. To

get empirical results, we pretrain RITA onWISDM dataset with 20%/40%/60%/80% of the pretraining

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 62. Publication date: February 2024.

62:22 Jiaming Liang, Lei Cao, Samuel Madden, Zachary Ives, and Guoliang Li

Vanilla

Group Attn.

0 20 40 60 80 100 120 140 160
 Time Cost / sec

Group Attn.

Linformer

Performer

Triformer

PatchTST

TST

Vanilla

0 100 200 300 400 500
 Time Cost / sec

Fig. 7. Query Execution time for 10,000 10-NN queries. Precision: Vanilla (88.34%), Group Attn.(88.29%),
Linformer(88.07%), Performer(88.23%/), Triformer(42.45%), PatchTST(80.84%), TST(40.72%).
data and finetune each pretrained model with 100 labels per class. The results in Table 5 show that:

(1) The more pretraining data, the larger the improvement. The accuracy increases with the

sizes of the pretraining data; (2) Marginal utility diminishing. The first 20% pretraining data

gives a 10.38% improvement in accuracy (72.94% vs 62.56%), while the remaining 80% pretraining

data only gives an additional improvement of 2.12% (75.06% vs 72.94%).

7.6 Similarity Search
We develop a time-series query system to conduct this similarity search experiment. We first use

RITA to extract feature embeddings from the training set of the ECG dataset and store them in a

vector DB. We then use the timeseries in validation set as queries to find their 𝑘NN from the vector

DB. Given a query, we use RITA to extract its feature embedding at online query time.

In our experiment, we use Postgres [13] as the vector DB, as it features the HNSW index to

speed up the high dimensional similarity search. We set the 𝑘 as 10 in 𝑘NN search and run 10,000

queries. The results, as depicted in Figure 7, show that RITA is faster than all baselines by 60%,

indicating that RITA outperforms the baselines on inference time as well. The precision of RITA is

on par to that of Vanilla Transformer. Note the precision of Vanillar Transform is considered to be

the upper bound of the precision of all Transformer-based methods, because it uses the original

expensive attention mechanism without any approximation. RITA outperforms all other baselines

in precision, while faster than them.

8 RELATEDWORK

Method TST Vanilla Triformer PatchTST Performer Linformer Group Attn.

Time Complexity 𝑂 (𝑛2𝑑) 𝑂 (𝑛2𝑑) 𝑂 (𝑛𝑑2𝑚
𝑇
) 𝑂 (𝑛𝑑2𝑚

𝑆
) 𝑂 (𝑛𝑑 (𝑑 + 𝑃)) 𝑂 (𝑛𝑑 (𝑑 + 𝐿)) 𝑂 (𝑛𝑑 (𝑑 + 𝑁))

Space Complexity 𝑂 (𝑛2) 𝑂 (𝑛2) 𝑂 (𝑛𝑑𝑚
𝑇
) 𝑂 (𝑛𝑑𝑚

𝑆
) 𝑂 (𝑛 (𝑑 + 𝑃)) 𝑂 (𝑛 (𝑑 + 𝐿)) 𝑂 (𝑛 (𝑑 + 𝑁))

Table 6. The time/space complexity of Transformer-based methods. 𝑛: timeseries length; 𝑑 : embedding
dimension;𝑚: number of channels; P,L,N,S,T: method-specific parameters

8.1 Timeseries Analytics
There is a great deal of prior work on timeseries analytics methods. This work can be divided into

three categories: (1) non-deep learning methods; (2) CNN/RNN-based deep learning methods; and

(3) Transformer-based deep learning methods.

Traditional Methods. These methods, such as TS-CHIEF [52], HIVE-COTE [38], ROCKET [18]

have achieved notable performance on public datasets. Despite that, traditional methods suffer

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 62. Publication date: February 2024.

RITA: Group Attention is All You Need for Timeseries Analytics 62:23

from one or more issues: they (1) rely on expert knowledge for feature extraction; (2) incur heavy

computation cost and are inappropriate for GPU devices; (3) support only uni-variate timeseries;

(4) perform classification solely.

In particular, as the SOTA of timeseries representation learning, GRAIL [47] extracts landmarks

from data and computes the representations with the combination of the landmarks. However,

GRAIL only supports uni-variate timeseries. Our experiments (Sec. 7.4) show that RITA outperforms

GRAIL in both effectiveness and efficiency on uni-variate timeseries.

CNN/RNN-based Deep Learning Methods. CNN-based methods, such as InceptionTime [25]

and Resnet [23], are good at classification tasks, but can not handle generative tasks such as

forecasting because of the inductive bias of convolution networks. TS2VEC [68] is the SOTA

non-Transformer representation learning method which uses CNN architecture. As confirmed in

experiments, RITA consistently outperform it. RNN-basedmethods, such as Brit [8] and deepAR [51],

support classification, regression and generation. However, the recurrent structure brings a lot

of problems: (1) limiting the model’s ability in capturing long-range correlation; (2) notoriously

difficult to train [48] because of gradient vanishing and exploding problem. As a result, such

methods can hardly scale to very long timeseries.

Transformer-based Deep Learning Methods. Given that Transformer is the best choice for

backbone in almost all sequence modeling tasks, some effort has been made to apply Transformer

to timeseries analytics.

In timeseries forecasting, LogTrans [35] introduced a log sparsity assumption to attention

computation. Informer [71] pushes LogTrans a step further and scales forecasting to multi-variate

timeseries. Autoformer [65] performs forecasting by decomposing timeseries into the trend part

and the seasonal part. FEDformer [72] proposed a Frequency Enhanced Attention with Fourier

Transform. Pyraformer [40] and Triformer [12] used hierarchical attention structures. PatchTST [46]

introduced a patching pattern in attention. In our experiments, among this big family, we choose

Triformer and PatchTST as our baselines, because they experimentally outperform the others and

are considered as SOTA in this field.

Because these methods are tailored for timeseries forecasting, the feature embeddings produced

by their specialized designs may have adverse effects on other timeseries analytical tasks. For

instance, Triformer incorporates sequence compression operations, which can be detrimental

for imputation due to the potential loss of vital information on the entire timeseries. Moreover,

Triformer employs variable-specific modeling, computing embeddings for each input channel

separately. While this approach may be beneficial for forecasting tasks, it may not be suitable

for classification, as the latter necessitates the consideration of information from all channels

simultaneously.

For imputation tasks, CDSA [43] outperforms statistical methods and the SOTA RNN-based

method Brit [8]. For timeseries classification, AutoTransformer [50] performs architecture search to

adapt to tasks in different domains. For timeseries anomaly detection, Anomaly Transformer [66]

outperforms many widely used methods such as OmniAnomaly [54], assuming the attention score

maps show Gaussian distribution.

All of these works are designed for specific tasks, rather than a representation learning
framework to serve different downstream tasks. To fill this gap, some researchers proposed a

Transformer-based architecture, called TST [70]. Like RITA, TST supports regression, classification,

and unsupervised learning through the “cloze test” pretraining task on timeseries. However, TST

directly uses the classical Vanilla self-attention, thus not scalable to long timeseries as shown in

our experiments (Sec. 7).

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 62. Publication date: February 2024.

62:24 Jiaming Liang, Lei Cao, Samuel Madden, Zachary Ives, and Guoliang Li

8.2 Efficient Transformers
The need to improve the scalability of Transformers has led to more efficient variations, especially

for accommodating long text data in NLP [56]. A first step was to introduce fixed/random patterns to

the self-attention mechanism. Sparse Transformer [10] and Longformer [4] only compute attention

at fixed intervals. ETC [2] and BigBird [69] use global-local attention: the computation is limited

within a fixed radius, while some auxiliary tokens are added to attend/get attended globally.

However, fixed attention patterns heavily depends on users to give an optimal setting.

Reformer [31] proposed only computing the dominant attention terms based on their observation

of sparsity in attention matrix from language/image data. Such sparsity is intuitive in language

data, in which a word’s attention mainly focuses on the nearby sentences. However, attention in

timeseries data shows strong seasonal patterns rather than sparse patterns, mainly as result of the

periodicity of timeseries data. Therefore, such works do not work well for timeseries.

Apart from introducing attention patterns, some works seek to solve this problem with applied

mathematics techniques. Linformer [62] performs a projection to decrease the size of query, key and

value matrices before attention computation, because the attention matrix tends to be low-ranked.

Performer [11] uses linear functions to approximate the kernel function softmax, making attention

computation commutative. Linformer and Performer do not depend on the unique properties of

language data, thus potentially fitting timeseries better than other techniques, which is why we

compared against them in our experiments. However as shown in Sec. 7, our group attention

significantly outperforms them in both accuracy and efficiency (training time), because group

attention fully leverages the periodicity of timeseries.

In Table 6, we summarize the time/space complexity of the works that target scale Transformers to

long sequence. Note although several methods claim linear time/space complexity, their complexities

all involve a method-specific constant, similar to the number of groups 𝑁 in our group attention.

In the long time series scenarios, when 𝑑 ∈ [64, 128, 256] and 𝑛 ≫ 𝑑 ≈ (common settings) where

𝑑 denotes the dimension of feature embeddings and 𝑛 represents the length of the timeseries,

the theoretical complexities of PatchTST, Triformer, Linformer, and Performer are at the same

magnitude to group attention.

However, our empirical experiments show that Group Attention consistently and significantly

outperforms these methods in terms of efficiency, as shown in Fig. 4, Fig. 5, Table 3. This is because

our group attention is well-suited to long time series. The longer the timeseries is, the more

opportunity group attention has to find the similar segments and group them together. This leads

to a slower growth rate in the number of groups ‘N’ – the constant in the time/space complexities

of group attention.

9 CONCLUSION
In this work, we presented RITA, an automatic, self-supervised, and scalable timeseries embedding

tool. RITA effectively adapts Transformer, popular in NLP, to embed timeseries segments into feature

vectors. As the key component of RITA, group attention eliminates the performance bottleneck of

the classical self-attention mechanisms, thus successfully scaling RITA to highly complex, long

timeseries data. Our experiments confirm that RITA significantly speeds up existing attention

mechanisms by 63X with a better accuracy.

ACKNOWLEDGMENTS
This work was supported in part by NSF grants III-1910108 and DBI-2327954.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 62. Publication date: February 2024.

RITA: Group Attention is All You Need for Timeseries Analytics 62:25

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado, Andy Davis,

Jeffrey Dean, Matthieu Devin, et al. 2016. Tensorflow: Large-scale machine learning on heterogeneous distributed

systems. arXiv preprint arXiv:1603.04467 (2016).

[2] Joshua Ainslie, Santiago Ontanon, Chris Alberti, Vaclav Cvicek, Zachary Fisher, Philip Pham, Anirudh Ravula, Sumit

Sanghai, Qifan Wang, and Li Yang. 2020. ETC: Encoding long and structured inputs in transformers. arXiv preprint
arXiv:2004.08483 (2020).

[3] Lu Bai, Weixing Ji, Qinyuan Li, Xilai Yao, Wei Xin, andWanyi Zhu. 2022. DNNAbacus: Toward Accurate Computational

Cost Prediction for Deep Neural Networks. arXiv preprint arXiv:2205.12095 (2022).
[4] Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020. Longformer: The long-document transformer. arXiv preprint

arXiv:2004.05150 (2020).
[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,

Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[6] C Bui, N Pham, A Vo, A Tran, A Nguyen, and T Le. 2017. Time series forecasting for healthcare diagnosis and

prognostics with the focus on cardiovascular diseases. In International conference on the development of biomedical
engineering in Vietnam. Springer, 809–818.

[7] Lei Cao, Wenbo Tao, Sungtae An, Jing Jin, Yizhou Yan, Xiaoyu Liu, Wendong Ge, Adam Sah, Leilani Battle, Jimeng Sun,

Remco Chang, M. Brandon Westover, Samuel Madden, and Michael Stonebraker. 2019. Smile: A System to Support

Machine Learning on EEG Data at Scale. Proc. VLDB Endow. 12, 12 (2019), 2230–2241.
[8] Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, and Yitan Li. 2018. Brits: Bidirectional recurrent imputation for time

series. Advances in neural information processing systems 31 (2018).
[9] Chris Chatfield. 2000. Time-series forecasting. Chapman and Hall/CRC.

[10] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. 2019. Generating long sequences with sparse transformers.

arXiv preprint arXiv:1904.10509 (2019).
[11] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas Sarlos, Peter

Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. 2020. Rethinking attention with performers. arXiv
preprint arXiv:2009.14794 (2020).

[12] Razvan-Gabriel Cirstea, Chenjuan Guo, Bin Yang, Tung Kieu, Xuanyi Dong, and Shirui Pan. 2022. Triformer: Triangular,

Variable-Specific Attentions for Long Sequence Multivariate Time Series Forecasting–Full Version. ICJAI (2022).
[13] PostGIS Project Steering Committee et al. 2018. PostGIS, spatial and geographic objects for postgreSQL. https:

//postgis.net

[14] Andrew A Cook, Göksel Mısırlı, and Zhong Fan. 2019. Anomaly detection for IoT time-series data: A survey. IEEE
Internet of Things Journal 7, 7 (2019), 6481–6494.

[15] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine learning 20, 3 (1995), 273–297.

[16] David R Cox. 1958. The regression analysis of binary sequences. Journal of the Royal Statistical Society: Series B
(Methodological) 20, 2 (1958), 215–232.

[17] Benjamin F Crabtree, Subhash C Ray, Priscilla M Schmidt, Patrick T O’Connor, and David D Schmidt. 1990. The

individual over time: time series applications in health care research. Journal of clinical epidemiology 43, 3 (1990),

241–260.

[18] Angus Dempster, François Petitjean, and Geoffrey I. Webb. 2020. ROCKET: exceptionally fast and accurate time series

classification using random convolutional kernels. Data Min. Knowl. Discov. 34, 5 (2020), 1454–1495.
[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers). 4171–4186.

[20] Evelyn Fix and Joseph Lawson Hodges. 1989. Discriminatory analysis. Nonparametric discrimination: Consistency

properties. International Statistical Review/Revue Internationale de Statistique 57, 3 (1989), 238–247.
[21] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,

Yangqing Jia, and Kaiming He. 2017. Accurate, LargeMinibatch SGD: Training ImageNet in 1 Hour. CoRR abs/1706.02677

(2017). arXiv:1706.02677 http://arxiv.org/abs/1706.02677

[22] Philip George Guest and Philip George Guest. 2012. Numerical methods of curve fitting. Cambridge University Press.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision and pattern recognition. 770–778.
[24] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain Muller. 2019. Deep

learning for time series classification: a review. Data mining and knowledge discovery 33, 4 (2019), 917–963.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 62. Publication date: February 2024.

https://postgis.net
https://postgis.net
https://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1706.02677

62:26 Jiaming Liang, Lei Cao, Samuel Madden, Zachary Ives, and Guoliang Li

[25] Hassan Ismail Fawaz, Benjamin Lucas, Germain Forestier, Charlotte Pelletier, Daniel F Schmidt, Jonathan Weber,

Geoffrey I Webb, Lhassane Idoumghar, Pierre-Alain Muller, and François Petitjean. 2020. Inceptiontime: Finding

alexnet for time series classification. Data Mining and Knowledge Discovery 34, 6 (2020), 1936–1962.

[26] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization for nearest neighbor search. IEEE
transactions on pattern analysis and machine intelligence 33, 1 (2010), 117–128.

[27] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity search with gpus. IEEE Transactions on
Big Data 7, 3 (2019), 535–547.

[28] Richard M Karp. 1972. Reducibility among combinatorial problems. In Complexity of computer computations. Springer,
85–103.

[29] Eamonn Keogh, Kaushik Chakrabarti, Michael Pazzani, and Sharad Mehrotra. 2001. Dimensionality reduction for fast

similarity search in large time series databases. Knowledge and information Systems 3, 3 (2001), 263–286.
[30] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980

(2014).

[31] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. 2020. Reformer: The efficient transformer. arXiv preprint
arXiv:2001.04451 (2020).

[32] John Kraft and Arthur Kraft. 1977. Determinants of common stock prices: A time series analysis. The journal of finance
32, 2 (1977), 417–425.

[33] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Classification with Deep Convolu-

tional Neural Networks. In Advances in Neural Information Processing Systems, F. Pereira, C.J. Burges, L. Bot-
tou, and K.Q. Weinberger (Eds.), Vol. 25. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2012/file/

c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[34] Oscar D Lara and Miguel A Labrador. 2012. A survey on human activity recognition using wearable sensors. IEEE
communications surveys & tutorials 15, 3 (2012), 1192–1209.

[35] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng Yan. 2019. Enhancing the

locality and breaking the memory bottleneck of transformer on time series forecasting. Advances in Neural Information
Processing Systems 32 (2019).

[36] T Warren Liao. 2005. Clustering of time series data—a survey. Pattern recognition 38, 11 (2005), 1857–1874.

[37] Rake& Agrawal King-lp Lin and Harpreet S Sawhney Kyuseok Shim. 1995. Fast similarity search in the presence of

noise, scaling, and translation in time-series databases. In Proceeding of the 21th International Conference on Very Large
Data Bases. 490–501.

[38] Jason Lines, Sarah Taylor, and Anthony Bagnall. 2018. Time Series Classification with HIVE-COTE: The Hierarchical

Vote Collective of Transformation-Based Ensembles. ACM Trans. Knowl. Discov. Data 12, 5, Article 52 (jul 2018),

35 pages.

[39] Feifei Liu, Chengyu Liu, Lina Zhao, Xiangyu Zhang, Xiaoling Wu, Xiaoyan Xu, Yulin Liu, Caiyun Ma, Shoushui Wei,

Zhiqiang He, et al. 2018. An open access database for evaluating the algorithms of electrocardiogram rhythm and

morphology abnormality detection. Journal of Medical Imaging and Health Informatics 8, 7 (2018), 1368–1373.
[40] Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dustdar. 2021. Pyraformer:

Low-complexity pyramidal attention for long-range time series modeling and forecasting. In International Conference
on Learning Representations.

[41] Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE transactions on information theory 28, 2 (1982), 129–137.

[42] Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017).
[43] Jiawei Ma, Zheng Shou, Alireza Zareian, Hassan Mansour, Anthony Vetro, and Shih-Fu Chang. 2019. CDSA: cross-

dimensional self-attention for multivariate, geo-tagged time series imputation. arXiv preprint arXiv:1905.09904 (2019).
[44] Yu AMalkov and Dmitry A Yashunin. 2018. Efficient and robust approximate nearest neighbor search using hierarchical

navigable small world graphs. IEEE transactions on pattern analysis and machine intelligence 42, 4 (2018), 824–836.
[45] Tripti Negi and Veena Bansal. 2005. Time series: Similarity search and its applications. In Proceedings of the International

Conference on Systemics, Cybernetics and Informatics: ICSCI-04, Hyderabad, India. 528–533.
[46] Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. 2022. A Time Series is Worth 64 Words:

Long-term Forecasting with Transformers. In The Eleventh International Conference on Learning Representations.
[47] John Paparrizos and Michael J Franklin. 2019. Grail: efficient time-series representation learning. Proceedings of the

VLDB Endowment 12, 11 (2019), 1762–1777.
[48] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the difficulty of training recurrent neural networks. In

International conference on machine learning. PMLR, 1310–1318.

[49] Ning Qian. 1999. On the momentum term in gradient descent learning algorithms. Neural networks 12, 1 (1999),

145–151.

[50] Yankun Ren, Longfei Li, Xinxing Yang, and Jun Zhou. 2022. AutoTransformer: Automatic Transformer Architecture

Design for Time Series Classification. In Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer,

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 62. Publication date: February 2024.

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

RITA: Group Attention is All You Need for Timeseries Analytics 62:27

143–155.

[51] David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. 2020. DeepAR: Probabilistic forecasting with

autoregressive recurrent networks. International Journal of Forecasting 36, 3 (2020), 1181–1191.

[52] Ahmed Shifaz, Charlotte Pelletier, François Petitjean, and Geoffrey I. Webb. 2020. TS-CHIEF: a scalable and accurate

forest algorithm for time series classification. Data Mining and Knowledge Discovery 34 (2020), 742–775.

[53] Allan Stisen, Henrik Blunck, Sourav Bhattacharya, Thor Siiger Prentow, Mikkel Baun Kjærgaard, Anind Dey, Tobias

Sonne, and Mads Møller Jensen. 2015. Smart devices are different: Assessing and mitigatingmobile sensing hetero-

geneities for activity recognition. In Proceedings of the 13th ACM conference on embedded networked sensor systems.
127–140.

[54] Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. 2019. Robust anomaly detection for multivariate

time series through stochastic recurrent neural network. In Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining. 2828–2837.

[55] Timo Sztyler and Heiner Stuckenschmidt. 2016. On-body localization of wearable devices: An investigation of position-

aware activity recognition. In 2016 IEEE International Conference on Pervasive Computing and Communications (PerCom).
IEEE, 1–9.

[56] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. 2020. Efficient transformers: A survey. ACM Computing
Surveys (CSUR) (2020).

[57] Mingyan Teng. 2010. Anomaly detection on time series. In 2010 IEEE International Conference on Progress in Informatics
and Computing, Vol. 1. IEEE, 603–608.

[58] Patrick A Thompson. 1990. An MSE statistic for comparing forecast accuracy across series. International Journal of
Forecasting 6, 2 (1990), 219–227.

[59] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and

Illia Polosukhin. 2017. Attention is All you Need. In Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA. 5998–6008.

[60] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski,

Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod

Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu

Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,

Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0

Contributors. 2020. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17 (2020),
261–272. https://doi.org/10.1038/s41592-019-0686-2

[61] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xiangyu Wang, Xiangzhou Guo, Chengming

Li, Xiaohai Xu, et al. 2021. Milvus: A purpose-built vector data management system. In Proceedings of the 2021
International Conference on Management of Data. 2614–2627.

[62] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. 2020. Linformer: Self-attention with linear

complexity. arXiv preprint arXiv:2006.04768 (2020).
[63] Gary M Weiss, Kenichi Yoneda, and Thaier Hayajneh. 2019. Smartphone and smartwatch-based biometrics using

activities of daily living. IEEE Access 7 (2019), 133190–133202.
[64] QingsongWen, Kai He, Liang Sun, Yingying Zhang, Min Ke, and Huan Xu. 2021. RobustPeriod: Robust Time-Frequency

Mining for Multiple Periodicity Detection. In Proceedings of the 2021 International Conference on Management of
Data (Virtual Event, China) (SIGMOD ’21). Association for Computing Machinery, New York, NY, USA, 2328–2337.

https://doi.org/10.1145/3448016.3452779

[65] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. 2021. Autoformer: Decomposition transformers with auto-

correlation for long-term series forecasting. Advances in Neural Information Processing Systems 34 (2021), 22419–22430.
[66] Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. 2021. Anomaly Transformer: Time Series Anomaly

Detection with Association Discrepancy. arXiv preprint arXiv:2110.02642 (2021).
[67] Dianmin Yue, Xiaodan Wu, Yunfeng Wang, Yue Li, and Chao-Hsien Chu. 2007. A review of data mining-based

financial fraud detection research. In 2007 International Conference on Wireless Communications, Networking and Mobile
Computing. Ieee, 5519–5522.

[68] Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and Bixiong Xu. 2022.

Ts2vec: Towards universal representation of time series. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 36. 8980–8987.

[69] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip

Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. 2020. Big bird: Transformers for longer sequences. Advances in
Neural Information Processing Systems 33 (2020), 17283–17297.

[70] George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty, and Carsten Eickhoff. 2021. A

Transformer-based Framework for Multivariate Time Series Representation Learning. In KDD ’21: The 27th ACM

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 62. Publication date: February 2024.

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1145/3448016.3452779

62:28 Jiaming Liang, Lei Cao, Samuel Madden, Zachary Ives, and Guoliang Li

SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, Singapore, August 14-18, 2021. 2114–2124.
[71] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. 2021. Informer:

Beyond efficient transformer for long sequence time-series forecasting. In Proceedings of AAAI.
[72] Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. 2022. FEDformer: Frequency enhanced

decomposed transformer for long-term series forecasting. arXiv preprint arXiv:2201.12740 (2022).

Received July 2024; revised October 2024; accepted November 2024

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 62. Publication date: February 2024.

	Abstract
	1 Introduction
	2 Background
	3 RITA overview
	3.1 RITA in Timeseries Query Systems
	3.2 Model Architecture

	4 Group attention mechanism
	4.1 The Idea of Group Attention
	4.2 Computing the Output Feature Embedding
	4.3 Error Bound
	4.4 GPU-Friendly Grouping Method

	5 Adaptive scheduler
	5.1 Dynamically Determining the Number of Groups N
	5.2 Dynamically Determining the Batch Size

	6 Supporting Downstream Tasks
	6.1 Classification
	6.2 Imputation
	6.3 Forecasting
	6.4 Other Unsupervised Tasks

	7 Evaluation
	7.1 Experimental Setup
	7.2 Classification
	7.3 Imputation
	7.4 Comparison to Non-deep Learning Methods
	7.5 Ablation Study
	7.6 Similarity Search

	8 Related work
	8.1 Timeseries Analytics
	8.2 Efficient Transformers

	9 Conclusion
	References

