
A System for Graph-Based Visualization of the Evolution of Software

Christian Collberg1∗ Stephen Kobourov1† Jasvir Nagra2‡ Jacob Pitts1 Kevin Wampler1†

1 Department of Computer Science,

University of Arizona, Tucson, AZ 85721.

{collberg,kobourov,jpitts,wamplerk}@cs.arizona.edu
2 Department of Computer Science,

University of Auckland, Auckland, New Zealand.

jas@cs.auckland.ac.nz

Abstract

We describe Gevol, a system that visualizes the evolution
of software using a novel graph drawing technique for visual-
ization of large graphs with a temporal component. Gevol
extracts information about a Java program stored within a
CVS version control system and displays it using a temporal
graph visualizer. This information can be used by program-
mers to understand the evolution of a legacy program: Why
is the program structured the way it is? Which programmers
were responsible for which parts of the program during which
time periods? Which parts of the program appear unstable
over long periods of time and may need to be rewritten?
This type of information will complement that produced by
more static tools such as source code browsers, slicers, and
static analyzers.

1 Introduction

There are many situations when a programmer is faced with
having to learn and understand an existing large and com-
plex software system. Consider, for example, the following
scenarios where Bob is a programmer and P is a large legacy
program:

• Bob is asked to add new functionality to P ;

• Bob is asked to fix bugs in P ;

• Bob is asked to determine whether algorithms exist in
P that violate intellectual property rights;

• Bob is asked to rewrite P in a new programming lan-
guage;

∗Partially supported by the NSF under grant CCR-0073483

and by the AFRL under contract F33615-02-C-1146.
†Partially supported by the NSF under grant ACR-0222920.
‡Partially supported by the New Economy Research Fund of

New Zealand.

• Bob is asked to port P to a new operating system or
architecture.

In many cases Bob will find that the program is undocu-
mented, unstructured, and poorly written. Worse, the orig-
inal developers may not be available to explain how the sys-
tem works. Before he can start modifying the program he
therefore needs to build a mental model of its structure. To
aid in this discovery process he can run the program, exam-
ine the source code, and read any available documentation.
Various tools such as source code browsers and static ana-
lyzers may be helpful in this respect.

In this paper we will describe a new tool — Gevol —
that aids in the discovery of the structure of legacy systems.
Gevol discovers the evolution of a program by visualizing
the changes the system has gone through. In particular,
Gevol extracts information about Java programs that are
stored within a CVS version control system. It then extracts
inheritance graphs, call graphs, and control-flow graphs of
the program and displays the changes the graphs have gone
through since the inception of the program. Gevol allows
Bob to visualize

• when particular parts of the program were first created;

• during which periods which parts of the program were
most heavily modified;

• which parts of the program seem to have been unstable
for a long period of time and therefore may be in need
of being rewritten;

• which programmers have modified which parts of the
code when;

• which parts of the program have grown in complexity
over a long period of time.

Gevol is not intended as a stand-alone system. Rather,
our ultimate goal is to integrate it with other tools such
as source code browsers. This will allow a programmer to
examine the source code, control-flow, inheritance structure,
and call structure of a program — as they change over time
— in order to understand every aspect of the system.

Gevol is in active development. We are currently in
the process of integrating several software complexity met-
rics [Chidamber and Kemerer 1994,Henry and Kafura 1981,
Halstead 1977,Oviedo 1980,McCabe 1976] within the sys-
tem. This will allow the graph visualizations to be driven by
how the complexity of a class or a method is changing over
time. Figure 1 shows an overview of the design of Gevol.

77

Copyright © 2003 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions Dept,
ACM Inc., fax +1-212-869-0481 or e-mail permissions@acm.org.
© 2003 ACM 1-58113-642-0/03/0006 $5.00
ACM Symposium on Software Visualization, San Diego, CA

{collberg, kobourov, jpitts, wamplerk}@cs.arizona.edu
jas@cs.auckland.ac.nz

In order to study the effectiveness of Gevol the CVS tree
of the Sandmark [Collberg 2003] project was used. Sand-
mark is a software watermarking and obfuscation tool devel-
oped jointly by the University of Arizona and the University
of Auckland. It consists of over 100,000 lines of Java code
and has been edited by twenty six developers over a period
of two years for which the CVS tree is avaliable.

The remainder of this paper is structured as follows. In
Section 2 we present the types of visualizations our system
is capable of. In Section 3 we discuss the Tgrip tempo-
ral graph visualization system on which Gevol is based. In
Section 4 we describe how information is collected from CVS
repositories. In Section 5 we present related work, in Sec-
tion 6 we discuss our findings, and in Section 7 we summarize
our results.

2 Temporal Visualization Models

We are hoping Gevol will be a useful tool when learning
about a new code-base. Not only will we be able to view a
current snapshot of the code, we will be able to visualize the
entire history of the development process. This may lead to
interesting insights that could not otherwise be gleaned from
examining the mere source.

Our goal is to develop a system that allows the visual-
ization of all evolutionary aspects of a program. We are
therefore extracting all available information from the CVS
repository of a Java program, expressing it as graphs, and
using a temporal graph drawing system to visualize the in-
formation. We are currently extracting the following data:

1. The author of each change of each file.

2. The control-flow graphs of each method in the program.

3. The change in each basic block in the control-flow
graphs.

4. The inheritance graph of the program.

5. The call-graphs of the methods of the program.

6. The time of each change to each file.

Every piece of information is collected for every time-slice.
The temporal granularity is configurable but in our current
system the size of each slice defaults to one day.

This information allows us to visualize the evolution of a
program in several useful ways:

• We color-code nodes depending on how long they have
been unchanged. All nodes start out being red, then
grow paler and paler for every time-slice they have re-
mained unchanged until they are finally drawn a pale
blue. When a node changes again it returns to red and
the process repeats. As the user moves through the
time-slices this will draw his attention to parts of the
system that are in flux at different points in time.

• When the user notices an interesting event (say, a code
segment changing heavily for a long period of time) he
can click on a node to examine the set of authors who
have affected these changes.

• If the user notices that an area of the graph remains
constantly red, but does not grow significantly, this may
mean the area is a site of constant bug fixes and may
need to be redesigned or better tested.

3 Visualization of Large Evolving Graphs

In theory, every problem can be encoded as a graph prob-
lem, by representing the input/output in binary and treat-
ing them as graphs (adjacency matrix or list). In this case,
the problem becomes that of finding the transformation
that takes the input graph into the output graph. While
this approach is not practical in many applications, it does
make sense in visualizing programs, in particular, inheri-
tance graphs, call graphs, and control-flow graphs. Visual-
izing such graphs can lead to discovery of unsuspected rela-
tionships, patterns, and trends.

In this paper we consider the problem of interactive visual-
ization of large graphs that have a temporal component. We
develop new techniques, models and algorithms that allowed
us to implement a prototype system for interactive visual-
ization of large temporal graphs arising from large software
development.

The main algorithmic challenge is to develop techniques,
models, algorithms and data structures for interactive tem-
poral graph visualization. Consider a graph that evolves
through time. The changes in the graph include adding and
removing vertices and adding and removing edges. The vi-
sualization of such data must ensure that:

• the drawing is readable, and

• the drawing preserves the mental map of the underlying
structure.

A readable layout for a graph is one that shows the un-
derlying relationships. For example, if the graph contains a
clique of nodes, we would like these nodes to be uniformly
placed on a sphere and not, say along a straight-line seg-
ment. The mental map of the user is preserved if the same
parts of the graph that appear in different frames remain
in the same position. This is usually too restrictive and in-
stead selected landmarks can be chosen that remain in the
same position while other parts are allowed to deviate from
their previous positions. A naive approach to displaying a
sequence of graphs would be to draw each one from scratch.
If we were to layout each graph independently of the others,
it is unlikely that the mental map will be preserved. Con-
versely, if we were to layout each graph incrementally from
the previous one, we would preserve the mental map but
the quality of the layout will likely suffer dramatically when
global changes are not allowed.

We propose an approach that combines both readability
and mental map preservation. Let G1, G2, . . . , Gn be the
sequence of graphs that we would like to visualize as a time-
series. Define the aggregate graph, G∗, to be the graph
obtained by adding all the graphs in the sequence. That is,
G∗ is a weighted graph in which a vertex has a weight that
corresponds to the number of frames in which the vertex ap-
pears (edge weights are defined analogously). The problem
becomes that of finding a readable layout for the aggregate
graph, taking into account the edge and vertex weights and
using the placement of the vertices in each time-frame.

The algorithm used to display the various program struc-
ture graphs is based on GRIP [Gajer and Kobourov 2000,
Gajer et al. 2000]. GRIP can lay out very large graphs in
reasonable time by computing a hierarchical filtration of
the graph. This set of filtrations of a graph G forms a se-
quence {Vn} of subsets of the nodes of G such that for every
Vi, Vj ∈ {Vn}, i < j ⇒ Vi ⊂ Vj . In practice, it is usually
the case that |Vi+1| ≥ 2|Vi|, so a filtration does not nor-
mally contain very many elements. The filtrations are laid

78

CVS repository

...

Day 1

Day n

Day 2

view

...

Inheritance
Graph

Call Graph
CFG

CFG

Zoom
Next
Day

Prev
Day

Pan

TGrip Graph Visualizer

Day 2

extract

Day 2

⇒

⇓ check out

⇒

Figure 1: Overview of the Gevol system.

out from smallest to largest (smallest index to largest in-
dex) and the layout of Vi is used to provide an outline of the
layout of Vi+1.

The layout of each filtration proceeds by us-
ing an approach related to the spring-embedder of
Eades [Eades 1984] and the force-directed method
of Kamada and Kawai [Kamada and Kawai 1988,
Kamada and Kawai 1989]. The main underlying prin-
ciple of these methods is that vertices repel each other,
while edges prevent adjacent vertices from getting too
far from each other. Thus, for a given node v in G, the
displacement of v is calculated by:

~FKK(v) = (1)
∑

u∈Ni(v)

(

‖p[u] − p[v]‖2

dG(u, v)2 · edgeLen2
− 1

)

(p[u] − p[v])

where p[u] is the position of node u, Ni(v) is the neighbor-
hood of node v, dG(u, v) is the distance between nodes u and
v in graph G, and edgeLen is the predefined optimal edge
length. In the last level of the filtration a Fruchterman-
Reingold calculation [Fruchterman and Reingold 1991] for
the force vector is used:

~Fa,FR =
∑

u∈Adj(v)

‖p[u] − p[v]‖2

edgeLen2
(p[u] − p[v]) (2)

~Fr,FR =
∑

u∈Ni(v)

s
edgeLen2

‖p[u] − p[v]‖2 (p[v] − p[u]) (3)

The displacement of a node v is then simply ~FFR(v) =
~Fa,FR + ~Fr,FR.

3.1 Dynamic Graph Visualization

GRIP [Gajer and Kobourov 2000,Gajer et al. 2000] is de-
signed to quickly layout graphs with tens of thousands of
vertices without assuming any information about the under-
lying graphs. This makes it a good base for the visualization
of graphs that evolve through time. However, before we can
employ the aggregate-graph approach to GRIP we need to
modify it so that attributes such as weights on the nodes
or edges of a graph are taken into account. To accommo-
date the kinds of information which is often of interest in
software visualization, GRIP was extended to support two
additional attributes: weights of nodes and of edges and
time-slice information. The meaning of the weight infor-
mation is self-evident, and a time-slice is a label associated
with each node representing which snapshot of the state of
the system being analyzed the node is in. A dynamic graph
will then consist of a series of time-slices each of which is a
graph representing the state of the system at a given point
in time. Edges can be arranged between the time-slices in
various ways depending on what properties we are interested
in.

3.2 Node and Edge Weights

Modification to the forces that act on the nodes were made
to accommodate weights and achieve the following goals:

1. Two nodes connected by an edge of weight 0 should
behave as if not connected by an edge at all;

2. An edge connecting two nodes, each of weight zero,
should have a natural length of zero;

3. Heavy nodes should be placed further apart;

4. Heavy edges should be shorter;

5. If an edge of weight w connects two nodes of weight w,
the edge’s ideal length should be the same as an edge

79

Figure 2: Snapshot of the Gevol system viewing SandMark’s inheritance graph. A subset of the classes have been labelled.

of weight 1 connecting two nodes of weight 1, but the
larger the w, the stronger the connection should be.

Given these considerations, an edge e of weight we con-
necting nodes u, v of weight wu, wv, respectively, is given an
ideal length of:

√
wu · wv

we

(4)

This formula will lead to a division by zero if we = 0. The
resulting infinite distance is indeed the correct ideal distance
for the Fruchterman-Reingold force based calculations, since
two disconnected nodes have only repulsive forces between
them. In practice, however, this is undesirable and thus we
ensure that all edges of weight zero are removed.

To account for the layout constraints of weighted graphs
the graph distance between two nodes is replaced with the
ideal distance between the nodes. Because of the compu-
tational and space requirements of calculating the effects of
all paths between two nodes, or of computing the shortest
weighted path between them, an approximation is used. Let
p1, p2, . . . , pn be the sequence of nodes in the shortest un-
weighted path in G connecting two nodes, u and v. Then

we define:

optDG(u, v) =

n−1
∑

i=1

√
wpi

· wpi−1

wepipi−1

(5)

In pratice this approximation works both quickly and well.
The final force calculation used in the modified Kamada-
Kawai method is:

~FKK(v) = (6)
∑

u∈Ni(v)

(

2‖p[u] − p[v]‖2 · (p[u] − p[v])

(edgeLen · optDG(u, v))2 + ‖p[u] − p[v]‖2

)

−

−
∑

u∈Ni(v)

(p[u] − p[v])

To achieve an aesthetically pleasing layout of the graph it
is also necessay to employ modified Fruchterman-Reingold
forces, as the Kamada-Kawai method does not achieve sat-
isfactory methods by itself but rather creates a good approx-
imate layout so that the Fruchterman-Reingold calculations
can quickly “tidy up” the layout. The modifications needed

80

1 2 3 4 5

A

B

C

D

Figure 3: Snapshots of the SandMark inheritance graph. Nodes are colored by author and by latest change. When a node
first appears it is given the color of its author. In this example author 1 is red , author 2 is yellow , other authors

are green , and author-less classes (such a library or system classes) are black. For every time-step that a node does not

change, its color will fade to blue. Nodes belonging to author 1 will go through the color progression 〈 , , , , 〉,
while author 2’s nodes will go through 〈 , , , , 〉.

81

1 2 3

A

B

Figure 4: Snapshots of the SandMark call-graph. Nodes start out red. As time passes and a node does not change, it turns
purple and, finally, blue. When another change is affected the node again becomes red.

to support weighted graphs are simple:

~Fa,FR =
∑

u∈Adj(v)

we · ‖p[u] − p[v]‖2

edgeLen2
(p[u] − p[v]) (7)

~Fr,FR =
∑

u∈Ni(v)

s
edgeLen2 · √wu · wv

‖p[u] − p[v]‖2 (p[v] − p[u]) (8)

3.3 Graph Time-Slices

The modifications needed to support time-slices in the
Kamada-Kawai method are quite simple. In equation (6)
the only alteration required is that the function optDG(u, v)
be redefined so that for two nodes u, v with time-slice indexes
of tu and tv respectively:

optDG(u, v) = δtutv ·
√

wu · wv

we

(9)

where δ is the Kronecker delta:

δij =

{

1, i = j
0, i 6= j

The modifications needed for the Fruchterman-Reingold
calculations are similar: repulsive forces are eliminated out-
side of a given time-slice:

~Fa,w,t,FR = ~Fa,w,FR (10)

~Fr,w,t,FR = δtutv · ~Fr,w,FR (11)

4 Extracting CVS Information

As shown in Figure 1 the Gevol system will check out con-
secutive versions of the code for the Java program under
study. The program is compiled to a collection of Java class-
files. The classfiles are loaded into Gevol and control-flow
graphs, call graphs, and inheritance graphs are built. Each
graph is stored in an individual file which can later be loaded
by the Tgrip viewer.

Thus, the result of the extraction step is a sequence of
files, one per generated graph. Let n be the number of days
in the CVS repository. There is one call graph per day:

〈Call1, Call2, · · · , Calln〉,

one inheritance graph per day:

〈Inher1, Inher2, · · · , Inhern〉,

and a number of control-flow graphs per day:

〈 CFG1,m1
, CFG1,m2

,
CFG2,m1

, CFG2,m2
, CFG2,m3

,
· · ·

CFGn,m1
, CFGn,m2

, CFGn,m3

〉

.

Constructing inheritance graphs is straight-forward since
each Java class-file indicates the parent of the class and the

82

1 2

A

B

Figure 5: The SandMark control-flow graph. As with the call-graph in Figure 4, changed nodes start out red and gradually
fade to blue. Note that in the current system, changes a large number of nodes of the graph (such as shown in B2 above)
result in undesirable changes in layout of the graph.

interfaces it implements. Since a Java class can extend one
class (Java is a single-inheritance language) but implement
several interfaces the inheritance graph is a DAG.

Constructing call-graphs is slightly more complicated.
The target of a method invocation p.m() will depend on the
runtime type of p. We do a conservative type-based analysis
of the potential targets of method invocations by considering
the inheritance graph. A more precise data-flow based anal-
ysis would be possible but is not necessary for our purposes.
The call-graph will typically be a forest of directed graphs.
The reason is that most Java programs are multi-threaded
(if not explicitly then implicitly through the use of graphi-
cal user interfaces) and many calls appear “spontaneously”
through actions of the Java runtime system.

Control-flow analysis is complicated by the fact that most
Java bytecode instructions can throw an exception. As a re-
sult control-flow graphs are very dense with exception edges
and hence become highly unreadable. We therefore omit
many edges such as those generated by possible null-pointer
exceptions.

Once daily graphs have been constructed they must be
merged into a “time-slice-graph.” To merge two graphs G1

and G2 (where G2 is a modified version of G1) we identify
which node n from G1 corresponds to which node m from
G2 and add an edge n → m:

G1

G2

(Here, colors indicate node identities.) Tgrip knows that
these (dashed) time-slice edges should be treated specially.
In particular, Tgrip will attempt to place the same node
from two slices in approximately the same location. This will
allow for smooth transitions as the user navigates through
time.

For inheritance graphs and call-graphs it is straight-
forward to add time-slice edges. The reason is that every
node can easily be given a unique identity. In the case of the
inheritance graph each node is identified by the fully qual-
ified class name. In the case of the call graph each node is
identified by class-name:method-name:method-signature. It
is necessary to include signatures in the identifier since Java
allows method overloading.

Adding time-slice edges for control-flow graphs is signif-
icantly more difficult. To see why, consider the following
example:

83

G1 G2

⇒

Here, two nodes (corresponding to the then and else
branches of the if-statement) of the control-flow graph have
changed. However, it will in general not be possible to deter-
mine which node in G1 changed into which node in G2. We
might heuristically identify the two nodes with the smallest
edit distance, but at best this can only be an educated guess.
Our current version of the system employs a very conser-
vative estimate of which nodes correspond to which nodes
across slices. In particular, it identifies nodes by calculat-
ing a hash on the instruction body of the node and linking
nodes with identical hashes across time-slices. It assumes
that nodes that have changed and thus have new hash val-
ues are in fact new nodes. This means that changed nodes
may not appear close to the same node over different time-
slices.

In practice, this is not a significant problem if only a few
nodes change since these other nodes fix the position of the
new node relatively close to the original, and such that it is
perceptively obvious that the new node is an altered version
of the old one.

In addition to the information extracted from the program
code we also incorporate information from the CVS respos-
itory itself into the graphs. This includes time-stamps and
author information.

After all pieces of information have been gathered and
the graphs have been merged we are left with three graphs:
an inheritance graph, a call-graph, and a set of control-flow
graphs. Each graph has n (number of days) layers, where
each node in one layer is connected by a time-slice edge to
the corresponding node in the next layer.

5 Related Work

Many program visualization tools have been proposed in
the past. The aim of these tools is to improve the un-
derstanding of computer programs by humans by por-
traying them in a form that is more readable than mere
source code. In this section we will briefly review some
software visualization tools. For more in-depth informa-
tion we refer the reader to one of the many available
visualization taxonomy studies [Myers. 1986,Myers 1990,
Price et al. 1992,Roman and Cox 1993].

5.1 Static Visualization

One of the best known interactive software visualization sys-
tems is BALSA [Brown 1988] developed at Brown Univer-
sity. BALSA annotates the program being visualized with
hooks so that “interesting events” such as changes to data
structures and subroutine calls and returnss can be relayed
to the visualization system. This in turn builds up a view
that corresponds to these events.

BALSA later evolved into Zeus [Brown 1992], a system
that shows multiple synchronized views of a running pro-
gram. Zeus allows a developer to interrupt the running
program and edit it using any one of many available data
structure representations. The changes are propagated to

update all other views. Furthermore, Zeus allows a user to
use sound and color to enhance the visualization.

SHriMP [Storey et al. 1997] is a more recent system that
offers a variety of different graphical views of a software sys-
tem. For example, class and inheritance hierarchies as well
as aggregation can be visualized. A programmer trying to
understand how various components of a software system
fit together can zoom in or out of particular components as
well as focus on specifics such as relevant documentation or
source code.

One major problem with visualizing call-graphs is their
density. Young [Young and Munro 1997] attempts to over-
come this problem by abandoning the standard graph view
for a CallStax view. This lays out each call chain as a stack
of cubes. The view is examined in a virtual reality environ-
ment.

5.2 Visualizing Evolving Software

Real-world software changes over time and software be-
comes better or worse because of the changes made to
it. There are many tools available for analyzing such
changes. These usually extract historical information stored
by change management systems such as CVS and SCCS.
SoftChange [Mockus et al. 1999] is such tool that extracts
complexity, size, purpose and author of changes made to a
program and summarizes this information in textual web-
based reports. The authors note that “to study software
changes it was essential to handle large and complex data
sets. The volume, complexity, and lack of structure of soft-
ware change data overwhelm standard statistical analysis
tools.”

Ball [Ball et al. 1997] describes a tool that attempts to
deduce a better understanding of a program from its devel-
opment history. The system attempts to synthesize views of
the requirements of the software, the implementation tech-
nology, the development process and the organization of de-
velopers based on the version control system logs and the
source code.

Ball [Ball and Eick 1996] describes a system that visual-
izes many different aspects of software using three differ-
ent types of representation: Line representation shows pro-
gram source at three scaling levels, giving both detail and
overview. Pixel representation shows each line of code as an
individual pixel. Hierarchical representation, finally, is used
to model statistics for structured data such as file systems.
In all cases the text or pixels are color coded to show a par-
ticular statistic of interest. Particularly relevant to our work
is the fact that the system collects information about code
age.

Eick [Eick et al. 2002] visualizes software changes using
mostly traditional views, such as bar-graphs, pie-charts, ma-
trix views, and cityscape views. A large number of different
types of statistics can be displayed, allowing changes to the
system to be viewed from many different perspectives. The
most significant strength of this system, however, is that
is able to examine extremely large programs, up to several
million lines of code.

A similar technique called Revision Towers is used by Tay-
lor et el. [Taylor and Munro 2002] that uses color bars of
varying thickness and height to represent the current size,
changes and authors of a piece of code. These bars are an-
imated over time to show the development of the software
repository.

84

5.3 Dynamic Graph Drawing

Graph drawing techniques for static graphs have been
used for dynamic graph visualization. North [North 1996]
studies the incremental graph drawing problem in
the DynaDAG system. Brandes and Wagner adapt
the force-directed model to dynamic graphs using a
Bayesian framework [Brandes and Wagner 1998]. Diehl and
Görg [Diehl and Görg 2002] consider graphs in a sequence
to create smoother transitions. Special classes of graphs
such as trees, series-parallel graphs and st-graphs have
also been studied in dynamic models [Cohen et al. 1995,
Cohen et al. 1992,Moen 1990]. Most of these approaches,
however, are limited to special classes of graphs and usually
do not scale to graphs over a few hundred vertices.

6 Discussion

Figure 6 shows a sequence of snapshots of the SandMark
inheritance graph. There a several notable events. In Fig-
ure 6A,5 and Figure 6C,4 one author “broke the build,” i.e.
checked in code that would not compile properly. This prob-
lem was fixed in the next time-slice. Going from the time-
slice in Figure 6D,1 to Figure 6D,2 a large code-segment (al-
most 10,000 lines of code shown as two green tendrils stretch-
ing towards the top of the page) was removed.

It is also interesting to note that different authors can be
seen to play distinct roles. Author 2 (yellow) is obviously
more involved in the core architecture of the software. The
nodes (classes) he introduces lie close to the center of the
inheritance tree and other classes extend them. Author 1
(red), although as prolific in generating new classes as au-
thor 1, introduces classes along the fringe of the graph. They
are specializations of core classes and presumably implement
actual functionality. Thus it is reasonable to conclude that
author 2 is a system architect and author 1 a programmer.

Figure 4 shows snapshots of the SandMark call-graph.
Figure 4A,1 shows that an early part of the system con-
sisted of two main parts, the gui (top) and the obfusca-
tion algorithms (bottom). In June of 2002 a new struc-
ture was created (sandmark.util.controlflow) which be-
came a mediation-point between the two structures. This
is shown in purple in Figure 4A,2. Initially, the gui
calls the obfuscation algorithms directly but over time,
sandmark.util.controlflow comes into existence between
the two parts and acts as an intermediary. Figure 4B,3 shows
another instance of the build being broken.

Figure 5 shows the control-flow graph for a method
sandmark.util.stacksimulator.StackSimulator.execute()
from SandMark. The large size of the graph itself makes it
stand out among the control-flow graphs of other methods
and identifies it as a good candidate of refactoring. Fur-
thermore, the relative absence of blue indicating unchanged
basic blocks in A,1, A,2 and B,4 allows one to deduce that
most of the method is being rewritten during this period.

It is important to note that for reasonable size programs
the generated graphs can be huge. Our current test case
is the SandMark system which consists of approximately
90,000 lines of code developed over 200 days.1 The gener-
ated call graphs have a total of 760,201 nodes and 2,216,034
edges over all the time-slices. The inheritance graphs have
a total of 100,722 nodes and 123,145 edges.

1The actual development time is longer than that but 200 days

is the extent of the CVS record.

The control-flow graphs consist of a total of 3,091,105
nodes and 3,294,038 edges. Visualizing graphs of this mag-
nitude is a daunting task.

One of the techniques Gevol uses for making these graph
more manageable is to preprocess them before displaying
them to contain only those nodes that the user is currently
interested in. The system allows the user to specify (using a
regular expression) the range of values for a particular field of
a node that the user wishes to view. For example, although
the control-flow graph contains well over three million nodes,
the user may only be interested in those nodes that occur in
a particular package or by a particular author.

7 Summary

We have presented a system for visualization of the evolu-
tion of software using a novel graph drawing technique for
visualization of large graphs with a temporal component.
Three different types of graphs were considered: inheritance,
control-flow, and program call-graphs.

Acknowledgments: The extraction of some of the CVS
graphs was done by Christopher Brue and Abin Shahab.
Kelly Heffner helped in analyzing the temporal views of
SandMark.

85

sandmark.util.stacksimulator.StackSimulator.execute()

References

Ball, T., and Eick, S. G. 1996. Software visualization in the large.

IEEE Computer 29, 4, 33–43.

Ball, T., Kim, J., Porter, A., and Siy, H. 1997. If your version control

system could talk. In ICSE ’97 Workshop on Process Modelling

and Empirical Studies of Software Engineering.

Brandes, U., and Wagner, D. 1998. A bayesian paradigm for dynamic

graph layout. In Proceedings of the 5th Symposium on Graph

Drawing (GD), Springer-Verlag, G. Di Battista, Ed., vol. 1353 of

Lecture Notes Computer Science, 236–247.

Brown, M. 1988. Exploring algorithms using Balsa-II. IEEE Com-

puter 21, 5, 14–36.

Brown, M. H. 1992. Zeus: A system for algorithm animation and

multi-view editing. Tech. Rep. 75, 28.

Chidamber, S. R., and Kemerer, C. F. 1994. A metrics suite for object

oriented design. IEEE Transactions on Software Engineering 20,

6 (June), 476–493.

Cohen, R. F., Battista, G. D., Tamassia, R., Tollis, I. G., and Berto-

lazzi, P. 1992. A framework for dynamic graph drawing. In Pro-

ceedings of the 8th Annual Symposium on Computational Geome-

try (SCG ’92), ACM Press, Berlin, FRG, A.-S. ACM-SIGGRAPH,

Ed., 261–270.

Cohen, R. F., Di Battista, G., Tamassia, R., and Tollis, I. G. 1995.

Dynamic graph drawings: Trees, series-parallel digraphs, and pla-

nar ST -digraphs. SIAM J. Comput. 24, 5, 970–1001.

Collberg, C., 2003. Sandmark: A tool for the study of software

protection algorithms. http://www.cs.arizona.edu/sandmark.

Diehl, S., and Görg, C. 2002. Graphs, they are changing. In Pro-

ceedings of the 10th Symposium on Graph Drawing (GD), 23–30.

Eades, P. 1984. A heuristic for graph drawing. Congressus Numer-

antium 42 , 149–160.

Eick, S. G., Graves, T. L., Karr, A. F., Mockus, A., and Schuster,

P. 2002. Visualizing software changes. Software Engineering 28,

4, 396–412.

Fruchterman, T., and Reingold, E. 1991. Graph drawing by force-

directed placement. Softw. – Pract. Exp. 21, 11, 1129–1164.

Gajer, P., and Kobourov, S. G. 2000. GRIP: Graph dRawing with

Intelligent Placement. In Proceedings of the 8th Symposium on

Graph Drawing (GD), 222–228.

Gajer, P., Goodrich, M. T., and Kobourov, S. G. 2000. A multi-

dimensional approach to force-directed layouts. In Proceedings of

the 8th Symposium on Graph Drawing (GD), 211–221.

Halstead, M. H. 1977. Elements of Software Science. Elsevier

North-Holland.

Henry, S., and Kafura, D. 1981. Software structure metrics based on

information flow. IEEE Transactions on Software Engineering 7,

5 (Sept.), 510–518.

Kamada, T., and Kawai, S. 1988. Automatic display of network struc-

tures for human understanding. Tech. Rep. 88-007, Department of

Information Science, University of Tokyo.

Kamada, T., and Kawai, S. 1989. An algorithm for drawing general

undirected graphs. Inform. Process. Lett. 31 , 7–15.

McCabe, T. J. 1976. A complexity measure. IEEE Transactions on

Software Engineering 2, 4 (Dec.), 308–320.

Mockus, A., Eick, S., Graves, T., and Karr, A., 1999. On measure-

ment and analysis of software changes.

Moen, S. 1990. Drawing dynamic trees. IEEE Software 7, 4 (July),

21–28.

Myers., B. A. 1986. Visual programming, programming by example,

and program visualization: A taxonomy. In ACM SIGCHI ’86

Conference on Human Factors in Computing Systems, 59–66.

Myers, B. A. 1990. Taxonomies of visual programming and program

visualization. Journal of Visual Languages and Computing 1, 1

(Mar.), 97–123.

North, S. C. 1996. Incremental layout in DynaDAG. In Proceedings

of the 4th Symposium on Graph Drawing (GD), 409–418.

Oviedo, E. I. 1980. Control flow, data flow, and program complexity.

In Proceedings of IEEE COMPSAC, 146–152.

Price, B. A., Small, I. S., and Baecker, R. M. 1992. A taxonomy

of software visualization. In Proc. 25th Hawaii Int. Conf. System

Sciences.

Roman, G.-C., and Cox, K. C. 1993. A taxonomy of program visual-

ization systems. IEEE Computer 26, 12, 11–24.

Storey, M.-A. D., Wong, K., Fracchia, F. D., and Muller, H. A.

1997. On integrating visualization techniques for effective software

exploration. 38–45.

Taylor, C., and Munro, M. 2002. Revision towers. In Visualizing

Software for Understanding and Analysis, IEEE Computer Press,

43–50.

Young, P., and Munro, M., 1997. A new view of call graphs for

visualising code structures.

86

A System for Graph-Based Visualization of the Evolution of Software:
Collberg, Kobourov, Nagra, Pitts, Wampler

1 2 3 4 5

A

B

C

D

Figure 6: Snapshots of the SandMark inheritance graph. Nodes are colored by author and by latest change. When a node
first appears it is given the color of its author. In this example author 1 is red , author 2 is yellow , other authors

are green , and author-less classes (such a library or system classes) are black. For every time-step that a node does not

change, its color will fade to blue. Nodes belonging to author 1 will go through the color progression 〈 , , , , 〉,
while author 2’s nodes will go through 〈 , , , , .

212

	Introduction
	Temporal Visualization Models
	Visualization of Large Evolving Graphs
	Dynamic Graph Visualization
	Node and Edge Weights
	Graph Time-Slices

	Extracting CVS Information
	Related Work
	Static Visualization
	Visualizing Evolving Software
	Dynamic Graph Drawing

	Discussion
	Summary

