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Abstract Within the software industry software piracy is a great concern. In this article we

address this issue through a prevention technique called software watermarking. Depending

on how a software watermark is applied it can be used to discourage piracy; as proof of

authorship or purchase; or to track the source of the illegal redistribution. In particular we

analyze an algorithm originally proposed by Geneviève Arboit in A Method for Watermarking
Java Programs via Opaque Predicates. This watermarking technique embeds the watermark

by adding opaque predicates to the application. We have found that the Arboit technique does

withstand some forms of attack and has a respectable data-rate. However, it is susceptible to

a variety of distortive attacks. One unanswered question in the area of software watermarking

is whether dynamic algorithms are inherently more resilient to attacks than static algorithms.

We have implemented and empirically evaluated both static and dynamic versions within the

SANDMARK framework.

Keywords Software piracy . Copyright protection . Software watermarking .

Opaque predicate

Software piracy and copyright infringement have been issues of concern for some time.

The ease with which people can access and use the Internet has lead to the widespread dissem-

ination of illegal software. To compound the problem, software is being legally distributed in

architectural neutral formats, such as Java bytecode. These formats closely resemble source

code and can be easily decompiled and manipulated. Not only do these formats make it easy

for software pirates to bypass license checks but they also allow unscrupulous programmers

to steal algorithmic secrets. This may allow them to decrease their own production time to

get an edge on the competition.
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Of course, there are legal ramifications associated with software piracy, such as a $150,000

fine for each program copied [1]. However, these fines are often targeted at an unsuspecting

end user and not at the person actually responsible for the piracy. When a person unknowingly

purchases and uses an illegal piece of software it is often difficult to trace this software back

to the guilty party. In addition, it is also hard to detect and prove that an unscrupulous

programmer has taken advantage of a trade secret.

Various organizations do perform audits to verify that corporations are not using ille-

gal software [1]. Unfortunately, auditing does not identify an unknown software pirate or

unscrupulous programmer. Software watermarking is one technique currently being investi-

gated to tackle this issue. Software watermarking embeds a unique identifier in a program.

The unique identifier can be used to identify the author or the legal purchaser of the program.

An authorship mark can be used against the unscrupulous programmer and a purchase mark

can be used to track the source of the illegal redistribution [18].

In this paper we present an implementation and empirical evaluation of a software

watermarking technique originally proposed by Arboit [5]. To the best of our knowledge

this technique has never been implemented nor empirically evaluated. The general idea be-

hind the algorithm is to embed the watermark by appending opaque predicates to branching

points selected throughout the application. The implementations have been incorporated into

the SANDMARK framework [2]. This allows us to evaluate the resilience of the algorithms

to manual and automated attacks. In particular, we consider attacks by tools such as static

statistics and code obfuscations. We also present a novel extension of this idea which uses a

dynamic recognition technique.

The remainder of the paper is structured as follows. We begin with a discussion of software

watermarking and previously proposed software watermarking algorithms. In Section 2 we

discuss opaque predicates, one of the most important aspects of the technique proposed by

Arboit. We present a general description of the technique as it was proposed in Section 3. This

is followed, in Section 4, by the details of our implementation and the dynamic technique.

Section 5 provides a detailed empirical evaluation of the algorithms and an evaluation of

static versus dynamic versions of the algorithm. Finally, in Section 6 we summarize our

findings.

1. Software watermarking

Software watermarking is just one of many techniques that is currently being studied to

prevent or discourage software piracy and copyright infringement. The idea is similar to

media watermarking where a unique identifier is embedded in image, audio, or video data

through the introduction of errors not detectable by human perception. Due to the nature of

software it is not possible to strictly apply the ideas found in media watermarking. Instead

embedding an identifier in a piece of software must be done in such a way that the original

functionality is maintained.

Definition 1. (Software watermarking System). Given a program P , a watermark w, and a

key k, a software watermarking system consists of two functions:

� embed (P, w, k) → P ′� recognize (P ′, k) → w.
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There are two general categories of watermarking algorithms, static and dynamic. A

dynamic algorithm relies on information gathered from the execution of the application to

embed and recognize the watermark. Static algorithms only examine the static code and data

of the application. A variety of techniques have been proposed for software watermarking but

there are few publications describing the implementation and evaluation of these algorithms.

There are far more static watermarking algorithms than dynamic due to the multitude of

locations where information can be hidden in an executable. For example, in a Java classfile

a static watermark can be embedded in the constant pool table, method table, etc.

Davidson and Myhrvold [12] proposed a static watermarking algorithm which embeds

the watermark by reordering the basic blocks of a control flow graph. Venkatesan et al. [25]

build on this idea in an algorithm which embeds the watermark by extending a method’s

control flow graph through the insertion of a subgraph. Monden et al. [14, 15] propose a

technique which embeds the watermark in a dummy method through a specially constructed

instruction sequence. Stern et al. [23] also consider instruction sequences for embedding the

watermark. Their technique modifies instruction frequencies to represent the watermark. Qu

and Potkonjak [20] make use of the graph coloring problem to embed a watermark in the

register allocation of an application.

The first dynamic watermarking algorithm, CT, was proposed by Collberg et al. [8]. In

this technique the watermark is embedded through a graph structure which is built on the

heap at runtime. A second technique by Cousot and Cousot [11] makes use of abstract

interpretation to embed a watermark in values assigned to integer local variables during

execution. Collberg et al. [10] proposed a dynamic path-based technique which embeds the

watermark in the dynamic branching behavior of the application by modifying the sequence

of branches taken and not taken on the secret input sequence. A final dynamic technique by

Nagra and Thomborson [17] relies on multi-threading to embed the watermark.

Of the early algorithms very little has been published on their implementation and evalu-

ation. There are a few existing implementations of the CT algorithm, such as the one within

the SANDMARK framework and that by Palsberg et al. [19]. A recent dissertation by Hachez

[13] provides an analysis of the Stern algorithm, as does Sahoo [21]. The Qu and Potkonjak

technique was evaluated by Myles [16] and Collberg et al. [6] provide an evaluation of the

Venkatesan technique.

SANDMARK [7] is a research tool for studying software protection techniques and in

particular software watermarking, code obfuscation, and tamper-proofing of Java bytecode.

One of the goals of the SANDMARK project is to implement and evaluate all known software

watermarking algorithms. The system includes a variety of tools that permit the study of

watermarking algorithms with respect to such properties as resiliency and stealth. Through

the implementation and evaluation of known software watermarking algorithms we will be

able to gain an understanding of what makes a software watermarking technique strong.

2. Opaque predicates

Opaque predicates were first presented by Collberg et al. [9] as a technique to aid in code ob-

fuscation and later incorporated in a software watermarking technique proposed by Monden

et al. [14, 15]. Informally, opaque predicates are inserted to make it difficult for an adversary

to analyze the control-flow of the application. This makes it more difficult to identify that

certain portions of the application are superfluous. For example, the Monden algorithm uses

opaque predicates to disguise the fact that a dummy method is never invoked.
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Table 1 Number theoretically
true opaque predicates used in the
implementation of the Arboit
Algorithms

∀x, y ∈ Z 7y2 − 1 �= x2

∀x ∈ Z 2|� x2

2 	
∀x ∈ Z 2|x(x + 1)

∀x ∈ Z x2 ≥ 0

∀x ∈ Z 3|x(x + 1)(x + 2)

∀x ∈ Z 7� | x2 + 1

∀x ∈ Z 81� | x2 + x + 7

∀x ∈ Z 19� | 4x2 + 4

∀x ∈ Z 4|x2(x + 1)(x + 1)

Definition 2. (Opaque predicate). A predicate P is opaque at a program point p, if at point p
the outcome of P is known at embedding time. If P always evaluates to True we write PT

p ,

for False we write P F
p , and if P sometimes evaluates to True and sometimes to False

we write P?
p [9].

Definition 3. (Opaque method). A boolean method M is opaque at an invocation point p, if

at point p the return value of M is known at embedding time. If M always returns the value

of True we write MT
p , for False we write M F

p , and if M sometimes returns True and

sometimes False we write M?
p.

The key challenge to using opaque predicates or opaque methods is to design them in such

a way that they are resilient to various forms of analysis. If an adversary can easily decipher

the value of an opaque predicate it provides very little protection for the software. A variety of

techniques such as using number theoretic results, pointer aliases, and concurrency have been

suggested for the construction of opaque predicates [9]. In addition to the number theoretic

results, Arboit also suggests a technique for constructing a family of opaque predicates

through the use of quadratic residues. Our current implementation of the Arboit algorithms

uses number theoretically true opaque predicates and opaque methods. The nine we have

implemented thus far can be seen in Table 1. An important aspect of the Arboit algorithms is

that the opaque predicate library must remain secret. If an adversary knows even a few of the

opaque predicates used in the embedding he may be able to identify them in the application

and then remove them.

None of the nine opaque predicates used in the current implementation are considered

cryptographically secure or even resilient to analysis. While this does weaken the implemen-

tation it does not invalidate the analysis in Section 5. The disadvantage of using these opaque

predicates is that the algorithm is not as stealthy and is susceptible to manual attacks that

will be elaborated on. As more sophisticated opaque predicates become available within the

SANDMARK framework they will be used to embed the watermark in place of the simple

ones in Table 1.

3. Arboit algorithm

Arboit proposed two watermarking techniques both based on opaque predicates [5]. The first

algorithm (henceforth GA1) is the basic insertion algorithm which directly uses the opaque

predicates. To embed a watermark, w is split into k pieces, w0, . . . , wk−1, and k branching
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points, b0, . . . bk−1, are randomly selected throughout the application. At each branching

point bi , either ∧PT
bi

, ∨¬PT
bi

, or ∨P F
bi

is appended to the predicate at that location. The bits

of the watermark are embedded through the opaque predicate that has been chosen. Within the

opaque predicate the bits can be encoded either as constants or by assigning a rank to each of

the opaque predicates. To recognize the watermark the application is scanned, extracting all

identifiable opaque predicates. The bits of the watermark are then decoded from the opaque

predicate. As an example, suppose our watermark is encoded in the opaque predicate x2 ≥ 0.

A watermark could be embedded as follows:

class c{
class c{ void ml(int a, int b){

void ml(int a, int b){ ...
... int x = 1;W

=⇒
if (a <= b) {...} if (a <= b) &&
else{...} (x*x>= 0)){...}
... else{...}

} ...
} }

}

The second Arboit algorithm (henceforth GA2) is similar to GA1 except opaque methods

are used to embed the watermark. Again k branching points b0, . . . , bk−1 are randomly

selected throughout the application. For each bi , MT
bi or M F

bi is created and a method call

is appended. The bits of the watermark are encoded in the opaque method through the

opaque predicate that it evaluates. To recognize the watermark the application is scanned,

extracting all opaque methods which are first identified through their signatures. Once a

possible candidate has been identified the method body is examined to find the opaque

predicate. To illustrate, suppose we use the same opaque predicate as above. Using GA2 the

application would be transformed in the following way:

class c {
boolean m2(){

class c { int x = 1;
void ml(int a, int b){ return (x*x >=0);

... }W
=⇒

if (a <= b) {...} void ml(int a, int b){
else{...} ...
... if ((a <= b) &&

} m2()){...}
} else{...}

...
}

}

Arboit claims that GA2 is more secure. The main argument is that changing the signature

of a method is difficult. However, this claim is untrue and SANDMARK includes code obfusca-

tions which can do just that. In Section 5 we will show that GA1 is in fact a stronger algorithm

than GA2. This claim demonstrates the importance of implementation and evaluation in the

proposal of a software watermarking algorithm.
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4. Implementation details

Our implementations of GA1 and GA2 follow from the algorithms presented by Arboit

[5]. A few modifications described below were made in an attempt to make the algorithms

more resilient to attack. In addition, we developed and implemented dynamic versions of the

algorithms.

4.1. Watermark encoding

Arboit proposed an encoding technique in which each piece of the watermark also includes

an index value. By including the index value the watermark pieces can be recovered in any

order. Our implementation also splits the watermark so that it can be recovered in any order,

but the index value is not required. Prior to embedding the watermark w it is encoded as

an integer and split into k pieces {w1, w2, . . . , wk} such that 0 ≤ wi ≤ n. The technique

used to split the watermark relies on a 1-1 correspondence between a multiset S of size

m (where S = {si : 0 ≤ si ≤ n}) and combinations of size n chosen from m + n elements.

Given this correspondence, the splitter enumerates combinations of n chosen from the m + n
elements for some fixed n. By using this particular splitting technique the order of the pieces

is unimportant.

The k pieces of the watermark are encoded in the opaque predicates in one of two ways:

through the use of constants in the predicate or by assigning a rank to each of the opaque

predicates in the library. If the opaque predicate is a number-theoretic result, wi can be

encoded:

1. in the constants contained in the predicate, or

2. by inserting new constants in the predicate.

For example, consider encoding the value 42 using the opaquely true predicate

4|x2(x + 1)(x + 1). This predicate has a constant value of 6 because it contains the constants

4, 1, and 1. Thus the value 36 still needs to be encoded. This is accomplished by multiplying

both sides by 18 which produces the opaque predicate [(18)(4)]|[(18)x2(x + 1)(x + 1)]. This

technique does not change the value of the opaque predicate and it permits the encoding of

any n ∈ N. To encode an odd valued watermark select an opaque predicate that already has

an odd constant value such as 2|x(x + 1).

Either technique for encoding the watermark using constants is valid, but using only the

constants that are contained in the predicate is restrictive. For example, using the 9 opaque

predicates in Table 1, only the values {0, 3, 4, 6, 8, 27, 88} can be encoded. The disadvantage

of inserting new constants is that it makes the opaque predicate more obvious.

To encode wi using rank, each of the opaque predicates are assigned a value starting at 0.

Using SANDMARK’s library the values {0, . . . , 8} can be encoded. While this technique is

simple, it does require that the opaque predicate library be a fair size in order to be useful.

4.2. Watermark embedding

The embedding process is dependent on identifying a set B of possible branching points. This

set is identified through preprocessing each method in the application. For each wi ∈ w an

opaque predicate PT
b j

or a call to an opaque method MT
b j

is appended to a selected b j ∈ B. In

an attempt to increase the strength of the algorithm we identify local variables in the method

which can be used in the opaque predicate. These variables are identified through the use of

a forward slice [24] centered around b j .
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Fig. 1 Transformation without method reuse

The most significant advantage to using live variables in the opaque predicate (as opposed

to inserting new variables) is that it aids in disguising the superfluous nature of the predicate.

The current disadvantage to this technique is that it is not always possible to identify local

variables containing integers around a selected b j . Thus, some branching points are unusable.

This disadvantage will be alleviated as other types of opaque predicates become available.

We were also able to add one more detail to the implementation that not only increases

the stealth but decreases the overhead. To embed a watermark using GA2, k new methods are

added to the application. This increase in code size could be unacceptable to size sensitive

applications such as those on mobile devices. One solution is to encode wi using rank and

reuse the new methods that are added to the application. For example, without method reuse

the example class C could be transformed into the class in Figure 1. With method reuse it is

transformed into the class in Figure 2. This detail increases the stealth by further disguising

the superfluous nature of the opaque method.

Arboit discusses a technique to inhibit the adversary’s ability to destroy the watermark

using method overloading. If the adversary attempts to modify the types of the overloaded

Fig. 2 Transformation with method reuse
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method, overriding occurs which could lead to faulty behavior. The current implementation

does not support this technique, but we will see in Section 5 that such a technique does not

prevent watermark distortion in those instances where GA1 outperforms GA2.

4.3. Watermark recognition

The recognition procedure varies slightly depending on which embedding technique is used.

Watermark recovery using GA1 involves an exhaustive search of each method. To identify

sets of instructions that may be opaque predicates the basic blocks of the control flow graph

(CFG) [4] and expression trees are constructed. Each opaque predicate will end with an if
instruction which can be found as the last instruction of a basic block. The instructions that

comprise the expression tree for that if instruction are compared to the entries in the opaque

predicate library.

If the watermark was embedded using GA2 then each method is scanned looking for

invoke instructions which call a method that has the same signature as one of the opaque

methods. Currently all opaque methods have a return type of boolean and either 1 or 2

parameters of type int. In the case when opaque methods are not reused the recognition

process could have been simplified to checking the signature of each method. Unfortunately

this does not yield the correct number of pieces when methods are reused. Within each opaque

method is an opaque predicate that is identified using the same technique as in GA1.

If wi is encoded using rank, the rank of that particular opaque predicate is identified. If

constants are used, the sum of the constants is extracted from the predicate. Once all possible

wi have been identified the values are combined to produce the watermark value.

4.4. Dynamic arboit algorithms

One of the yet unanswered questions in the area of software watermarking is whether dynamic

algorithms are inherently more resilient to attack than static algorithms. One technique to

investigate this idea is to develop, implement, and evaluate a dynamic version of an already

known static algorithm. To this end we have developed and implemented dynamic versions

of GA1 and GA2 (DGA1 and DGA2 respectively).

Dynamic algorithms make use of a program’s execution state to both embed and recognize

a watermark. There are three different dynamic techniques: Easter Egg Watermarks, Data

Structure Watermarks, and Execution Trace Watermarks [8]. DGA1 and DGA2 are execution

trace watermarking algorithms because the watermark is embedded in the trace of the program

as it is run with a specific input. This input represents the user’s secret key. For example,

suppose the application is a Tic-Tac-Toe game. The order in which the X’s and O’s are placed

on the game board becomes the secret key.

The novel aspect of DGA1 and DGA2 is that the execution trace is used to identify the

set of program branching points B instead of using randomly selected points. The motivating

factor in this design is that the program will execute the original set of branching points

when run with the secret key no matter how distorted an attacker makes the application. This

assumption is based on the idea that most transformations that cause the execution to skip

the branch will most likely alter the functionality of the application. Thus the dynamic nature

will improve the algorithm’s ability to withstand distortive attacks.

The set B of program branching points is required for both the embedding and recognition

phases. B is compiled by annotating the application prior to execution. The annotation phase

is fully automated and consists of adding a special function call immediately before each
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Fig. 3 The watermarking of a method using DGA1 or DGA2 requires an annotation phase which allows us
to identify which branch instructions are executed in the trace.

if instruction. The function calls represent break points. Each time this function is called

during the execution of the application it logs the location of the if instruction.

Figures 3(a) and 3(b) illustrate the transformation that occurs due to the annotations. To

illustrate the embedding procedure, suppose the execution of the application using the secret

input takes the path {1, 2, 4, 9, 10, 11, 13, 14}. Thus the set B consists of the if instructions

in blocks 2 and 10. To watermark this method either GA1 or GA2 is used. In this example,

the transformation that occurs due to watermarking is illustrated in Figure 3(c).

The recognition set B is again acquired through annotating the watermark application and

collecting an execution trace. To continue with the example, the execution trace consists of

the blocks {1, 2, 4, 9, 10, 10′, 11, 13, 14}. What we see is that the opaque predicate inserted

in block 2′ is not executed. This is because Java uses short circuit evaluation so the second

predicate does not necessarily need to be evaluated. (In the current implementation all inserted

predicates are opaquely true.) Since the trace identified block 2 we can still recover the

opaque predicate in 2′. This is accomplished by examining the fall through block of every

if instruction identified in the trace since it is a possible opaque predicate.

5. Evaluation

In order for a software watermarking technique to be effective against software piracy and

copyright infringement it should be resilient against determined attempts at discovery and

removal. Very little work has been done on evaluating the strength of software watermarking

systems and thus a formal set of properties has yet to be established. Through our study of

software watermarking algorithms using the SANDMARK system we have compiled the fol-

lowing properties which we believe aid in evaluating the strength of an algorithm [8, 13, 20]:
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credibility: The recognition process should report a watermark that was embedded and

should not report false watermarks.

data-rate: The algorithm should have a high data-rate to permit the embedding of a reason-

ably sized secret message.

overhead: Embedding a watermark should have little impact on the performance of the

application and the embedding/recognition procedure should not be costly.

part protection: In order to protect the watermark it should be distributed throughout the

application.

resiliency: The watermark must be resilient against determined attempts at discovery and

removal. In particular it should be resilient to three important types of attacks:� In a subtractive attack the attacker attempts to remove the watermark from the disassem-

bled or de-compiled code. Through a manual or automated inspection of the code the

attacker may be able to identify and remove a watermark with low transparency without

damaging the application.� In an additive attack the attacker adds a new watermark to the already watermarked

program in an attempt to cast doubt on which watermark was embedded first.� In a distortive attack a series of semantics-preserving transformations are applied to the

software in an attempt to render the watermark unrecoverable but maintain the software’s

functionality and performance.

stealth: The embedded watermark should be difficult to detect; i.e. it should exhibit the same

properties as the code or data around it.

We have evaluated both the static and dynamic versions of the Arboit algorithm within

SANDMARK with respect to each of the above properties. SANDMARK includes a variety of

tools that an adversary may use to discover and/or remove a watermark. These tools include:� An obfuscation tool that permits the evaluation of resiliency of the watermark under dis-

tortive attacks.� Additional watermarking algorithms for studying additive attacks (and in the future for

comparison purposes).� A bytecode viewer to display the watermarked bytecode and for manually examining the

stealth of the watermark.� A statistics module that provides static statistics about an application, such as the number

of methods, number of conditional statements, etc., which also aids in the evaluation of

stealth.

To evaluate the static GA1 and GA2 a set of 11 applications are used which vary in both size

and complexity. Two of these 11 applications are also used for the dynamic algorithms: TTT

(which is a Tic-Tac-Toe game) and JKeyboard (which allows a user to type using different

alphabets). The evaluation of the dynamic algorithms requires applications that make use of

user input. This is required so that different execution traces can be obtained. Details of 10

of the applications can be seen in Table 2. The 11th application is specjvm [3].

5.1. Credibility

The credibility of a watermarking algorithm is based on the accuracy of watermark recovery.

An algorithm can have poor credibility if it recovers a watermark which was not embedded

in the application (a false positive) or not recovering a watermark that was embedded (a false

negative). To evaluate the algorithms with respect to this property we ran the recognition
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Table 2 Benchmark applications
used in the evaluation of GA1
and GA2

Application Total classes Total methods Total size (bytes)

decode 4 20 5728

fft 1 10 3136

illness 16 104 13735

lu 1 7 2744

machineSim 12 110 17751

matrix 2 10 2939

probe 1 7 2699

puzzle 3 20 8627

TTT 12 51 2358

JKeyboard 30 147 32537

algorithms on non-watermarked and obfuscated versions of the benchmark applications. No

false negatives or false positives were detected in any of the test cases.

5.2. Data-rate

The data-rate for GA1, GA2, DGA1, and DGA2 will all be roughly the same. This is because

the embedding process is based on identifying usable if instructions. The only embedding

detail which can alter the data-rate is whether the watermark is encoded using constants or

rank. When rank is used the watermark must be split into more pieces since the value of each

piece is currently restricted to the values 0 through 8. Table 3 shows that by using constants

roughly 7 times as many characters can be embedded. The table also shows the total number

of if instructions found in the benchmark applications. From this it can be seen that there are

still many locations for embedding additional characters when the opaque predicate library

is expanded.

5.3. Overhead

There are various ways that the overhead property can be applied to evaluate a watermarking

algorithm:

1. What effect does the watermark have on the size of the application?

2. What effect does the watermark have on the performance of the application?

3. How costly are the embedding and recognition procedures?

Table 3 Maximum characters
embedded when encoding the
watermark using constants and
rank

Max characters Max characters Total if
Application using constants using rank instructions

decode 27 3 36

fft 14 2 16

illness 61 5 104

lu 15 2 17

machineSim 64+ 5 162

matrix 27 3 36

probe 15 2 17

puzzle 64+ 5 154

TTT 25 3 54

JKeyboard 46 4 147
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Table 4 CaffeineMark scores
before and after embedding a
watermark

Category Original Watermarked Slowdown

Sieve 7847 8089 −3.1%

Loop 54292 54248 0.1%

Logic 43656 43831 −0.4%

String 26173 26105 0.3%

Float 24076 24046 0.1%

Method 17077 15013 12.1%

Overall 24178 23788 1.6%

The increase in size depends on the number of watermark pieces and therefore on the size

of the watermark. In addition, the encoding technique also has an impact on the overhead.

When using constants the value of each wi can be larger which means the watermark does

not need to be split into as many pieces. For each wi roughly 80 bytes are added to the

application. The overhead can be reduced by reusing the methods when wi is encoded using

rank.

The CaffeineMark [22] benchmark shows the effect embedding a watermark has on the

execution time of the application. Table 4 shows that embedding a watermark has very little

negative impact on execution time.

The embedding and recognition procedures themselves are very efficient. Even the larger

applications could be watermarked in seconds. The aspect of the algorithm that is the most

costly is the preprocessing of the methods in the case of GA1 or GA2 and the annotation in

DGA1 and DGA2. Once the set of branching points is gathered the time required to embed

k opaque predicates is negligible.

5.4. Part protection

The idea behind the part protection property is to split the watermark into pieces and spread it

across the application. The split watermark has a better chance at survival since it requires that

the attack target multiple locations in the application. Both the static and dynamic algorithms

incorporate part protection by splitting w into k pieces and randomly distributing those

pieces. It was previously mentioned that reusing the opaque methods provided an advantage

by decreasing the overhead and increasing the stealth. Unfortunately this technique also

decreases the part protection. If the opaque method was used to encode three of the 10 pieces

of w removing the method has a higher impact than if only one piece was destroyed.

5.5. Resilience

There are three types of attacks that an adversary could launch in an attempt to destroy a

watermark: subtractive, additive, and distortive.

5.5.1. Subtractive attacks

One of the first things that an adversary may do in an attempt to eliminate a watermark

is decompile the application. Once the code has been decompiled the attacker can search

for aspects of the code that look suspicious such as dummy methods. If the attacker is

familiar with simple number theory properties he may realize that the watermark application

contains opaque predicates. If they are removed the application will still function normally

and the attacker has subverted the protection. This watermarking technique will always be
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Table 5 Results from applying
other watermarking algorithms to
the applications watermarked
using GA1, GA2, DGA1, and
DGA2. We found that for all test
cases the results were the same.
A ‘+’ indicates that the original
watermark was recovered. A ‘−’
indicates that the original
watermark was destroyed

Embedded using Embedded using

Watermarker GA1 GA2

AddMethodField + +
GA1 − −
GA2 − −
QP + +
BogusExpressions + +
BogusSwitch + +
BogusInitializer + +
ConstantString + +
HatTrick + +
MethodRenamer + +
MondenWmark + +

susceptible to subtractive attacks but using stronger opaque predicates, such as ones that are

not commonly known, will make it harder for the attacker to detect the watermarked sections.

In addition, maintaining the secrecy of the opaque predicate library will also improve the

resiliency against subtractive attacks.

5.5.2. Additive attacks

Additive attacks are used by an adversary when he is either unable to locate the watermarked

code or unable to remove the watermarked code. This type of attack is used to cast doubt on

the validity of the original watermark or to destroy the original all together. Table 5 shows

the results from applying other watermarking algorithms in the SANDMARK system to the

test cases that had been watermarked using GA1, GA2, DGA1, DGA2. We found that the

original watermark is quite resistant to the application of an additional watermark. However,

embedding a watermark using the same algorithm or one of the other GA’s destroyed the

original watermark. This occurred because the recognition procedure detected additional

opaque predicates. In addition we discovered that both watermarks are unrecoverable if we

apply GA1 then GA1, GA2 then GA2, or GA2 then GA1. Even though the original was

destroyed, the attacker will not be able to embed his own watermark using one of these

techniques. The same results occur with DGA1 and DGA2 except that applying DGA2 then

DGA1 does not destroy both watermarks.

5.5.3. Distortive attacks

Distortive attacks are any semantics preserving code transformation, such as code obfus-

cation or optimization algorithms. This type of attack is used to distort a watermark such

that it is unrecoverable. The advantage of this attack over subtractive attacks is that the

adversary need not know the exact location of the watermark. Rather, he can apply the

transformation indiscriminately over the application. Through the application of the code

obfuscations found in SANDMARK we discovered that GA1 is more resilient than GA2. This

discovery contradicts the claim made in [5]. The author claims that GA2 is stronger since

it is difficult to alter the signature of a method. The obfuscations Method 2R Madness,

Primitive Promoter, and PromoteLocals all modify the signatures of the methods

in the application. It is possible that implementing the overloading technique described in [5]

would improve the resiliency against Primitive Promoter and PromoteLocals. In
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Table 6 Number of
watermarked applications the
watermark was recovered from
after the stated obfuscation was
applied. The evaluation was
performed on 11 applications

Embedded using Embedded using

Obfuscation GA1 GA2

AddBogusFields 11 11

AppendBogusCode 8 0

BlockMarker 11 8

BogusPredicates 11 0

BoolSplitter 7 11

Buggy Code 11 9

Class Splitter 11 11

ConstantPool Reorderer 3 3

FalseRefactor 11 11

Inliner 11 11

InstructionOrdering 11 11

IntArraySplitter 11 11

InterleaveMethods 11 0

LocalVariable Reorderer 11 11

Method 2R Madness 0 0

Method Merger 11 1

Name Obfuscator 11 11

NodeSplitter 11 11

OpaqueBranch 11 10

ParamReorder 11 11

Primitive Promoter 3 0

PromoteLocals 0 0

Publicizer 11 11

Rename Locals 11 11

SetFieldsPublic 11 11

Signature Bludgeoner 11 11

Static Method Bodies 11 11

Thread Contention 11 11

VarSplitter 11 11

Variable Reassigner 11 11

addition GA2 is susceptible to attacks which merge methods or alter the body of the methods.

The results of applying all obfuscations to the 11 applications are shown in Table 6.

An important assumption made in the study of software watermarking is that the attacker

knows the algorithm used to embed the watermark. Based on this assumption the GA al-

gorithms can be easily attacked by simply applying a transformation that inserts an opaque

predicate in every boolean expression throughout the application. This attack will thwart

recognition and does not require knowledge of the secret key or the opaque predicate library

used for embedding. Applying such an attack to the caffeine benchmark yields an overall

slowdown of 97.5%. It is possible to decrease the slowdown by inserting the opaque pred-

icate in every other or every few boolean expressions, however this does not guarantee the

watermark will be destroyed.

Through application of the obfuscations we discovered that both the static and dynamic

algorithms demonstrate basically the same resiliency. The results from testing all four al-

gorithms on TTT and JKeyboard are in Table 7. Based on these results it is not clear that

converting a static watermarking algorithm which is already quite resistant to distortive at-

tacks will improve the strength of the algorithm. This however does not indicate that truly
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Table 7 Results from applying obfuscations to GA1, GA2, DGA1, DGA2. A ‘+’ indicates the
watermark was recovered. A ‘−’ indicates the watermark was destroyed

TTT JKeyboard

Obfuscation GA1 DGA1 GA2 DGA2 GA1 DGA1 GA2 DGA2

Add Bogus Fields + + + + + + + +
Append Bogus Code + + − − + − − −
Block Marker + + + + + + + +
Bogus Predicates + + − + + + − −
Boolean Splitter + + + + + + + +
Buggy Code + + ++ + + + + +
Class Splitter + + + + + + + +
Constant Pool Reorder − + − + + + + +
Degrade − − − − − − − −
FalseRefactor + + + + + + + +
Inliner + + + + + + + +
Instruction Ordering + + + + + + + +
Int Array Splitter + + + + + + + +
Interleave Methods + + + − + + − −
Local Variable Reorder + + + + + + + +
Method 2R Madness − − − − − − − −
Method Merger + + − − + + + +
Name Obfuscator + + + + + + + +
NodeSplitter + + + + + + + +
OpaqueBranch + + + + + + + +
ParamReorder + + + + + + + +
Primitive Promoter − − − − − − − −
Promote Locals − − − − − − − −
Publicizer + + + + + + + +
Rename Locals + + + + + + + +
SetFieldsPublic + + + + + + + +
Signature Bludgeoner + + + + + + + +
Static Method Bodies + + + + + + + +
Thread Contention + + + + + + + +
Var Splitter + + + + + + + +
Variable Reassigner + + + + + + + +

dynamic algorithms (those which can only exist in dynamic form) are not inherently stronger

than static algorithms.

5.6. Stealth

Of the evaluation properties stealth is the most subjective. Currently no technique exists to

quantify the meaning of stealth. What we do know is that when considering the stealth of

an application it is best to look at the stealth of the watermarked code within the application

(i.e. how does the watermarked code compare to non-watermarked code within the same

application) and the stealth of the watermarked code with respect to other applications.

These measures of stealth are called local and global stealth respectively.

One technique that can be used to evaluate stealth is to examine how the static statis-

tics of the application change between non-watermarked and watermarked versions of the
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Table 8 Static statistics of watermarked and non-watermarked version of TTT and JKeyboard.
The watermark value is “wildcat”

Conditional API Methods in Inherited

Application Methods statements Vectors calls scope methods

TTT 51 54 120 86 418 0

TTT GA1 51 61 120 86 418 0

TTT GA2 58 68 130 93 418 0

JKeyboard 147 147 554 204 2683 15

JKeyboard GA1 147 154 554 204 2683 15

JKeyboard GA2 154 161 561 211 2685 17

application. While this technique does not provide a quantitative measure it does highlight

areas of the watermark application which might be suspicious to an attacker. Table 8 contains

some static statistics of watermarked and non-watermarked versions of TTT and JKeyboard.

What we can see from these statistics is that applications watermarked using GA1 more

closely resemble the original.

6. Summary

Software piracy is an ongoing problem in the software industry. While there are some legal

means to handle the problem they do not always target the guilty party. Software watermarking

is an additional technique that can be used in the battle. The technique makes proof of

authorship or purchase possible and in some cases the source of the illegal distribution can

be identified.

In this paper we provided an implementation and evaluation of two techniques proposed

in [5]. In addition, we presented a novel extension of the technique to study static versus

dynamic watermarking algorithms. Through our analysis we showed that both GA algorithms

can be defeated. We also showed that GA1 is a stronger algorithm than GA2. We based these

conclusion on six properties. Of these GA1 had a lower overhead, was more resilient to attack,

and demonstrated a higher degree of stealth. With respect to the remaining three properties

the algorithms were equal. We also showed that the dynamic algorithms are only minimally

stronger than the static versions. From this we conclude that it is not clear that converting

a known static algorithm will improve the strength. However, this does not indicate that the

class of dynamic algorithms is not inherently stronger.
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