A Regression-Based Approach to Scalability Prediction

Bradley J. Barnes
Dept. of Computer Science
The University of Georgia

barnes@cs.uga.edu

Jaxk Reeves
Department of Statistics
The University of Georgia
jaxk@stat.uga.edu

ABSTRACT

Many applied scientific domains are increasingly relyindange-
scale parallel computation. Consequently, many largaeisisiow
have thousands of processors. However, the ideal numbepef p
cessors to use for these scientific applications varies lpath the
input variables and the machine under consideration, aedigir
ing this processor count is rarely straightforward. Acteinare-
diction mechanisms would provide many benefits, includimg i
proving cluster efficiency and identifying system confidiaa or
hardware issues that impede performance.

We explore novel regression-based approaches to predattgla
program scalability. We use several program executionssinal
subset of the processors to predict execution time on larger
bers of processors. We compare three different regressisad
techniques: one based on execution time only; another ges u
per-processor information only; and a third one based ogittzal
critical path. These techniques provide accurate scaliedip-
tions, with median prediction errors between 6.2% and 17®@%
seven applications.

Categories and Subject Descriptors
1.6.5 [Model Development: Modeling Methodologies

General Terms
Measurement, Experimentation

Keywords
Modeling, MPI, Prediction, Regression, Scalability

*This work was supported by NSF grant CCF-0429285. Part sf thi
work was performed under the auspices of the U.S. Departafent
Energy by Lawrence Livermore National Laboratory under -Con
tract DE-AC52-07NA27344. (LLNL-CONF-400700).

Copyright 2008 Association for Computing Machinery. ACMkaowl-
edges that this contribution was authored or co-authorednbgmployee,
contractor or affiliate of the U.S. Government. As such, tiog€dnment re-
tains a nonexclusive, royalty-free right to publish or mprce this article,
or to allow others to do so, for Government purposes only.
ICS’08,June 7-12, 2008, Island of Kos, Aegean Sea, Greece.
Copyright 2008 ACM 978-1-60558-158-3/08/06 ...$5.00.

Barry Rountree
Dept. of Computer Science
The University of Georgia

rountree@cs.uga.edu

Bronis de Supinski
Lawrence Livermore
National Laboratory
bronis@IlInl.gov

*

David K. Lowenthal
Dept. of Computer Science
The University of Georgia

dkl@cs.uga.edu

Martin Schulz
Lawrence Livermore
National Laboratory
schulzm@linl.gov

Time for 2 minute jobs to run

&)

Time (minutes)

20000 40000 60000 80000

) EQEE

T
4 64

0

128 256

Number of Nodes

Figure 1: Median time for a short application to commence ex-
ecution on the LLNL “Thunder” cluster when requesting dif-
ferent node counts. The system had 986 nodes.

1. INTRODUCTION

Nearly all applied sciences today rely on parallel compoat
Applications from a wide variety of domains run on large sys-
tems with thousands of processors, such as BlueGene/L.\idowe
these applications often achieve poor speedup and thuseffdor
ciency. For example, Alam et al. [2] characterized perfarogsfor
a biomolecular simulation and found that one time-consgmiart
of the program achieved a speedup of only 10 on 1024 processor

This inefficiency is costly to both the owners and the users of
the systems. To the supercomputer center, it wastes thensyst
terms of money and possibly power consumption. To the user, i
reduces system availability because other users allocate pro-
cessors than necessary. A mechanism to predict the paeéllel
ficiency of applications—without having to understand theiv-
level details and without executing them at scale—coulg i@
crease availability. Application scientists could userterhanism
to determine how many processors to request so their afiplica
run quickly without wasting resources beyond the point aictvh
they achieve good speedup. The improved efficiency would not
only reduce demand on the system’s resources but would -gener
ally reduce response time for the specific application. kamne
ple, Figure 1 shows that the worst-case time to acquire napes
pears to increase exponentially in the number of nodes. Hown
experience—carrying out experiments for the performaectian
of this paper—it took nearly a month to be granted 256 nodes fo
one of our applications.

System procurement decisions are often based on resutis fro

prototype systems with many fewer processors than thersytbizt
will eventually be purchased. An accurate prediction maidm
that indicates what performance will be achieved on theclafgs
yet unbuilt) system could improve its suitability for itstaal work-
load. Predictions can also guide optimization and providsesn
diagnostics, for example identifying when operating systetiv-
ity interferes with expected performance [24] or when noifarm
memory access necessitates finer control of processor t@rgem
mappings.
We investigate three techniques based on regression fdicpre

ing parallel program scalability. These techniques users¢ex-
ecutions with different input sets onsaall subset of the proces-

In some cases, strong scaling is impractical because of myer®o
quirements at low-end processor counts, and in those casesav
a hybrid of strong scaling along witlveak scaling Applications
that use weak scaling increase their total working set siapqy-
tionally as the number of processors increases, while th&ing
set for each processor remains constant.

We make several assumptions in this work. First, we assume
that all input variables to a given program (such as dataizet s
and processor grid dimensions) are available to us. Thigéaa
sonable assumption, as most high-performance computipli ap
cations use (sometimes complex) configuration files thati§pe
the input variables directly. Next, we assume that we knovuclvh

sorsto predict performance on a larger number of processors. Our input variables (e.g., sizes/constants given typicallinput files)

first technique is the most straightforward: simply fit tatakcu-
tion time from the data collected on training runs to a regjmes
and extrapolate to larger configurations. This simple tapgkan
works well for some cases if we use a reasonable predictioc fu
tion (a second-order polynomial). Our other two techniqrees
fine this approach by handling computation and communicatio
separately. One technique relies only on per-processornra-
tion; it gathers the computation and communication timesaath
processor, chooses the most representative pair, ancaselpae-
gresses on each to form a prediction. Our third techniquigeun
the per-processor method, ensures communication time imeve
cludes blocking by calculating computation and commuiocat
time via identification of the (global) critical path. Botidhniques
that separate communication from computation improveiptied
quality in the common case that both quantities are sigmifica
This paper makes several contributions.
the simple, “black-box” technique of regression can oftenua
rately predict performance on a larger processor count.orgec
we present a novel technique—separate regression on catigout
and communication—that improves prediction accuracy far p
cessor counts at which applications scale poorly. Thirdjdea-
tify two potential refinements to make higher-quality preidins:
better prediction functions and special handling of menzoryma-
lies, including both NUMA and cache capacity effects. Fouour
predictions for seven applications at processor count® U4,

First, we show that whereq € {2, ...

contribute significantly to execution time. Known techregexist
to find these variables [18]. Our procedure models exectiine
as some function of these input variables. The quality ofoodel
depends on considering all important input variables whatdb
ing the model. We also assume that the computational loaélis w
balanced; we will explore load imbalance in future work. dfiy

we assume that a program can be run using any configuration of

the input variables. While this does not always hold—forrexa
ple, many of the NAS Parallel Benchmarks [3] constrain tHaes
of the input variables—we overrode this limitation in ouitring
sets.

2.2 Approach

We predict execution time of a given programoprocessors us-
ing several instrumented runs of the same programmocessors,
,po}, po < p, andp is arbitrary. We vary the val-
ues of the input variables(, z2, . . ., z,) on the instrumented runs.
Because it is easier to acquiggrocessors thap, it is reasonable
to perform many instrumented runs for different configunasi of
the input variables. We then use the relationship betwesmfiut
variables and the observed execution time to develop aqioedi

T, of the execution tim@;
T:F(xhl’z,.. (l)

The idea is thaf’ ~ T', with small error. Once we determifie

-5 Ty Q)

based on runs on as few as 128 processors, demonstrate that agve use it to predict execution time for any arbitrary inputiatale

curate extrapolation of scaling behavior is possible. Sigady,
we achieved median prediction errors of between 6.2% arg@pd 7.
over all nontrivial programs. This includes Sweep3d, whees
specifically chose a configuration that would obscure sgabie-
havior. We also provide a mechanism to estimate how largessro
sor counts for training runs need to be for an accurate piedic

The rest of this paper is organized as follows. Section 2riees
our techniques for performance prediction. Next, we dbsoour
experimental methodology in Section 3 and the results ofgugur
techniques on seven applications in Section 4. FinallytiGed
places our approach in the context of prior work, while SetH
summarizes our findings and future directions.

2. PERFORMANCE PREDICTION

This section describes our prediction techniques. We wtisint
definitions along with our assumptions and then detail owicba
regression-based approach. Finally, we describe our ted®e
nigues.

2.1 Definitions and Assumptions

In this paper gorocessor configuratioiis simply a set of pro-
cessors, with one or more processors (or cores) on each kidale.
investigate predictions usirgirong scalingvhere possible, where
the total working set size is fixed over all processor conéigjans.

set @i, az, .. ., a,) andp processors. We emphasize that we pro-
duceT withoutany data from runs using processors , since we
choosepy < p. .

The scale in which the error betwe&hand the truel” is mea-
sured is crucial. For most applications, variability irases ag’
increases, so we use relative error:

E=|(T-1)|/T 2

Thus, our functionF' should minimize this relative error, sub-
ject to some feasibility constraints. Evaluation of diffiet mod-
els in terms of relative error depends heavily on the inpui-va
ables. Ideally, the functiod” minimizes the relative error by in-
telligent choices of the training set, i.e., the sets of tn@riables
(z1,z2,...,x,) and number of processorg)(used to build the
model.

Because we use relative error to evaluate modekhould be fit
to T in log-scale. The particular log-scale (elgg, orlog,,) does
not matter statistically; we udeg, and fit models of the form:

log2(T) = logz(F(z1, T2, - . . ?3)

such that the error is minimized ing,-scale. We can convert an
individual log,-scale error ¢) into a relative error RE): RE =

2lel — 1. However, for statistical accuracy we must minimize error
in the log-scale when evaluating a model’s fit over differput

,ZTn,q)) + error

configurations. If we minimized error in the untransform@d)
scale, errors at the largest valuesiofvould completely dominate
those at smalleT” values, making the model inaccurate.

Parameterization of thivgs (F(z1,za, . . ., xn,q)) function is
critical. A linear model like

log2(T) = Bo + B1logy(w1) + B2 logy (w2) + . ..

+Bn logy(xn) + Bqlogy(q) + error (4)

provides a reasonable first approximation, although itassimple

to capture the behavior of some applications. Statisticiafer to
this as a linear model, since it is linear in the unknown paam
ters (3o, B1, . - ., Bg) that are estimated so as to minimize the sum
of squared error (in log-scale). In engineering contexts, might
call this a “log-log” model, becausleg, is applied to both sides
of Equation 3 to obtain Equation 4, but it is a linear modelha t
statistical sense, which means we can employ the vasttitatis
theory of linear models (of which multiple regression is asat).
The right-hand side of Equation 4 can be made considerabig mo
general while remaining a linear model in the statisticakse For
example, one could include quadratic terms suctflag (x:)?)

or interaction terms such @8g»(z;) * log2(x;), or even try other
transformations of the input variables, suchaasor /z; rather
thanlogz(z;). Our results for the seven applications that we ex-
amine show that most of the variability due to the input Jalga
(z1,T2,...,2,) is explained by models of the form:

log2(T) = B1logy(w1) + B2 logy(z2) + ...

+0Bn logy(zn) + g(q) + error ©)

Thus, we focus on finding a good-fitting but parsimonious fiamc
g(q) that explains the effect of the number of processgrskor
three of the applications that we examine in Section 4, tmplks
linear function:

(6)

is best, while quadratic (itbg,(¢)) models, where there is an ad-
ditional term~,(log,(q))?, fit the other four applications better.
In general, we could use more complgfg) functions or include
more parameterss(in the linear model). However, at some point
the model adjustments will fit the sample data beyond théitioe

to the predicted input configurations. In this work we therefdo
not consider higher-order polynomials.

9(q) = Y0 + 71 log,(q)

2.3 Techniques

Our most straightforward approach uses the total exectition
for T" in Equation 5. Considering the two possible formsy¢d)
above, we have two possible ways to mdfielGathering the input
for this approach is simple because our applications atinteheir
execution times. We show in Section 4 that predictions using
gression based solely on total execution time are effeatig®eme
cases.

However, computation and communication typically scafe di
ferently as processor count changes. To address this, vetopexd
two techniques that separate computation and commuricathoe
amount of computation in parallelizable code regions véherally
scale proportionally to the increase in the number of premes
which holds for strong scaling of load balanced applicatio®n
the other hand, the behavior of communication time as thebeum
of processors increases depends on the application. Wlifeeh
increases with rising numbers of processors, our expetsrago
show some cases of decreasing communication time.

Figure 2: Critical path: P, @, and R are MPI tasks with edges
representing messages.

processor. We use the PMPI profiling interface to wrap all MPI
calls to measure both quantities. Because our applicatiane/ell
balanced computationally, the communication time usuedig-
tains the minimum amount of blocking time over all processor

Our third technique avoids blocking time altogether by fing
on the parallel execution'sritical path, the longest execution se-
qguenceawithout blocking The critical path determines the execution
time of a parallel program as Figure 2 shows. Any commurocati
time on this path is purely communication (i.e., sendinggnéng),
which helps our model avoid overestimating it.

For each technique to separate computation and commuaricati
we can fit the computation time two ways and fit the communi-
cation time two ways because we consider two possible fooms f
g(q). Combined with two possible ways to split computation and
communication, we therefore consider eight possible ways¢-
dict total execution time when separating computation amdrou-
nication.

3. EXPERIMENTAL METHODOLOGY

We tested our techniques using seven applications: five finem
NAS suite and two from the ASC Purple/Blue suites. The NAS
codes are BT and SP, which are computational fluid dynami®jCF
applications that use different solution approaches; @@estruc-
tured sparse linear solver; EP, an embarassingly paratigram;
and LU, a lower- and upper-triangular solution to impliciFl@
problems. We omit some NAS programs because of their inher-
ent constraints. Specifically, MG, FT, and IS require thatittput
sizes be powers of two, which does not allow us enough tests to
achieve a statistically significant result. The ASC appimezs are
SMG, a multigrid code, and Sweep3d, a 3D neutron transpdg.co

We make predictions of programs running piprocessors us-
ing three different processor configurations for trainipg:= p/8,
po = p/4, andpy = p/2. We follow this in our experiments below
as closely as possible; BT and SP require a number of prasesso
that is a perfect square, so we chose even-numbered processo
figurations as close as possible to powers of two.

We currently make the decision as to whether to separate com-
putation and communication as follows. We separate if eithea
program is not computation bound or (2) communication time i
creases with processors. The threshold for deeming ancafipli
computation bound is currently 90% (average) computatioay
processor configuration used during training (on both threnpele
maximum and the critical path techniques).

Recall that we regress on the input variables that conibig-
nificantly to execution time as well as the number of processors.
Table 1 shows the relevant input variables and the rangesviha
used for our seven applications. The applications areeaahtitve,
yet balance the work across the processors; thus, we doctotian
iteration count as a predictor variable. We use strongrsgatiith

Our second approach uses the maximum computation time BT, CG, SMG and Sweep3d while we use use a hybrid of strong

across all processors and the communication time from #raes

and weak scaling in which we increase the problem size o larg

[Application | Namel [Range || Name?2 [Range [[Name 3] Range [Training runs per proc. count

BT problem_size 20-500 — — — — 24

CG NA 500K-3M || NONZER 14-24 — — 24

EP m 278_938 — — — — 29

LU 15121 200-1000 15122 200-1000|] %siz3 | 200-1000 16
SMG DIM1 290-315 DIM?2 290-315 || DIM3 | 290-315 54

SP problem_size | 40-1400 — — — — 35
Sweep3d 1T 300-500 JTc 300-500 || KT¢ 300-500 64

Table 1: The seven applications and their input variable nanes and ranges.

processor counts to get reasonable execution times witSERNd
LU.

We observe resultg) for each instrumented run gmprocessors
and fit a linear model of the form given in Equation 5 for vagou
g(q). For a specifiedj(q), the set ofg; returned by the regres-
sion function are those that minimize the sum of squared.€fte
root-mean-squared-error (RMSE) for a particular regogssiea-
sures the typical error ifog,-scale when using the specified regres-
sion function to fit execution times over all input configimas of
(z1,22,...,2Zn,q). As mentioned above, we choose the function
g(q) to be a second order polynomial, which we found sufficient
for our experiments.

we also (if applicable) list the permutation that we usegétpf fit
and whether we used the critical path or maximum per-pracess
computation; when regressing on total time, there is na apt so
only one degree of freedom). More details are given in Sesto2,
4.3, and 4.4.

We make the following general observations. First, préaict
quality is often quite good, even on as fewgs= p/8 processors.
Second, prediction quality for communication intensivelaa-
tions is, except in one case (CG with = p/8), equal or better
when we treat computation and communication separatedyi(as
ing that there is enough communication to merit separatifigiyd,
CG is the primary case in which prediction quality pn = p/8

We use the statistical package R [12] for all regressions. We processors is poor. Finally, CG is also the one case in whieh p
emphasize that we run the program only on a small subset of thediction quality for separate regression is betterpgn= p/4 pro-

many possible input variable/processor combinations. eGly,
we allowed between 10-30 training runs per input variabte.tke
purposes of verification, we also run the program at the predi
processor counp. We use the execution timeg, onp processors
to evaluate how well a proposed function actually predictsra
on p processors, while the regressions we use to predict time on
processorslo notinclude these results.

4. RESULTS

This section discusses results of our performance predicti
techniques. We used the “Atlas” cluster, which has 1152-feay
AMD Opteron nodes, for all experiments. Each CPU has twoscore
running at 2.4 GHz, a 128KB split L1 cache, a 1MB L2 cache, and

cessors than opp = p/2 processors. We discuss these issues,
including how we might infer them automatically, in Sectidd.

4.2 Format of Detailed Results

We show two graphs for computation-bound applications and
three for communication intensive applications. The fitsft{
most) graph is a boxplot that shows the median, minimum, and
maximum error for predicting 1024-processor performaacrmif,
SMG uses 256 processors due to per-node memory limitations)
using the three next largest processor configurations, feigthe
1024 processor tests, we use values of 128, 256, and 532 Yor
The reported median, minimum, and maximum errors represent
values overall permutations of the input variables (small circles

16GB RAM. Each Opteron node is a NUMA architecture because represent outliers). As we explore different fits to modehpo-
each CPU has one quarter of the memory connected to a local on-tation and communication, these boxplots display the ptieafi

chip memory controller, while the rest must be accessedigfiro
remote memory controllers inside the remaining CPUs, wirieh
curs longer memory latencies. Hereafter, we use the teroepsor

to refer to a core to avoid confusion. We restrict our experita

to four processors per node since using all processors ome@ no
risks high variance [24]. Atlas uses a priority-based bajebue-
ing system that limited our ability to run sufficient expeeints to

(a maximum of) 1024 processors.

results. The way we chose the prediction model is as follows.
For the total execution time prediction (TOT), we chose &din

or quadratic fit based on lowest root-mean-squared-erfgiSB.
Additionally, if the program is considered communicatiotensive
(see Section 3), then for the predictions when separatingpata-

tion and communication (SEP), we chose the model with thedbw
weighted average RMSE. That is, we weighted the RMSE for com-
putation and communication by the percentage each cotedha

Because Atlas nodes have a NUMA architecture, we used total execution time op, processors.

cpu_bi nd to ensure that Linux allocated memory for each pro-
cessor locally. Separate experiments showed that Linogations

do not otherwise account for locality, which leads to latgghly
unpredictable variance in execution times with identinalit vari-
ables.

4.1 Summary of Results

We present the full results of our experiments in SectioBs4d
4.4 while Table 2 shows the median percentage error ovexall e
periments for each application. All predictions are for 4@Xcept
for SMG, which uses 256 due to memory limitations. We show the
best and worst errors both for regressingtotal execution time
and (if applicable) for regressing on teeparatetimes. For each,

The middle graph (shown only for communication intensive ap
plications) investigates three different models thattteEanputa-
tion and communication separately. This includes preatictising
values of all input variables, including number of processdre-
call from Section 3 we have eight possible models when regres
ing separately. For readability, we chose three of thedat @igs-
sibilities: the one with the smallest, second smallest, langest
weighted average RMSE. Each of the three alternatives hedeld
with a three-tuple that represents the type of fit used formaax
tion and communication, respectively (Q or L for quadratidio-
ear), and whether the critical path (CP) or maximum per-gssor
computation (MAX) was used to separate the two quantities.

Finally, the rightmost graph shows the quality of the fit dixal

Application Median Error, Total Type (Best) Median Error, Separate | Type (Best)
Best (Procs)| Worst (Procs) Best (Procs)] Worst (Procs)
BT 6.7% (484) | 13.0% (100) L — — —
CG 16.0% (256)] 120% (128) L 12.2% (256)| 66.3% (128) Q/L/CP
EP 0.1% (512) | 0.6% (128) L — — —
LU 13.8% (512)] 15.8% (128) Q — — —
SP 7.7% (100) | 12.8% (256) L 7.7% (100) | 12.1% (256) | L/Q/Max
SMG 14.4% (128)] 92.7% (32) Q 6.7% (128) | 25.6% (32) Q/Q/Max
Sweep3d || 32.8% (512)| 59.3% (256) Q 17.3% (512)| 33.2% (128) | Q/Q/Max

Table 2: Summary of results for all applications. The best ad worst median errors are shown, both when regressing on tota
execution time and (if applicable) separately on computatin and communication. For each, the number of processors udeor
prediction is shown. The right-most column shows, for the bst error, what type of regressions (linear vs. quadratic) ad which type

of separation (critical path vs. maximum), if any, are used.

(over all processor configurations) using the three alteremin
the middle graph. This is foone particular permutation of the
input variables, and this permutation is listed in the aaptiWe
also graph the measured time and, for reference, basetiaarli
speedup relative to the smallest processor configuratiomally
we extend the predictions to show our model results for Eeme
counts beyond those with which we experimented.

4.3 Computation-Bound Applications

We first discuss applications for which computation timeded
inant. This includes three applications: BT, EP, and LU. W&t fi
give an overview of all three applications, and then we cd@/Er
in depth (the characteristics of LU are similar, and EP is\aafr
application).

BT overview.BT yields nearly linear speedup up to 1024 pro-
cessors, as shown in Figure 3, which makes it a straightforwa
application to predict. The left-hand figure shows that edirfunc-

get even smaller when using larger numbers of processonss, Th
we conclude that regressing separately on computation amd ¢
munication is not necessary for BT, as it is not for LU and E®. A
mentioned earlier, we only regress separately when eiff)drqth
computation and communication are significant or (2) comoasn
tion is increasing.

4.4 Communication Intensive Applications

We next discuss applications for which there is a mix of com-
putation and communication. Separating computation anthuo-
nication is generally more important for these applicatioihis
class includes four applications: CG, SMG, SP and Sweep2d; w
present results in detail for CG and SMG.

CG overview.CG is significantly more difficult to predict than

any of the compute-bound applications. The results are shiow

Figure 6 and show several interesting characteristics of CG
First, the left-hand graph shows that when predicting 1024 p

tion for g(g) using total execution time to make predictions using _cessors and training with 256 processors, prediction tylialbet-
1024 processors always has a median error no more than 13%—itier than when training with 512 processors. The median error

is 13% when using 100 processors for prediction, 7.2% whimgus
256 processors, and 6.7% when using 484 processors. Thicsimp
ity of modeling BT leads to scaling predictions (right-hagrdph)
that match the measured execution time almost perfectly.

LU overview. Like BT, LU yields good speedup (see Figure 4).
While the results fopy = p/8 are good (14%) when considering
the median, the worst case (not including outliers) is shgbver
50%. This error arises due to tests with small run times.

EP overview.EP is arather straightforward application. Its only
communication is at MPI initialization and at the end of thre-p
gram (a barrier). Essentially, any technique works well redgct
execution time for EP (our error was well below 1%; see Fidi)re

Discussion.BT scales nearly perfectly because it has very little
communication and a balanced computational workload. Bexa
Atlas has no local disks to use for swap space, we were limited
to relatively small input sizes for BT in order to fit the prebi
into the memory of smaller processor configurations, whigt |
its the communication time. Thus, we omitted two experiraent
with extremely small run times—Iless than one-half of a sdcon
they are outliers with a large relative error, but are nofdative

of any other results. Moreover, unlike many parallel proggathe
communication time for BT actuallgecreasesvith an increase in
the number of processors, meaning that the small amountof co
munication that is present using small numbers of processir

(for predicting total time using the best available fit, whis a
quadratic) is 12% lower when training with 256 processoms, a
when separating computation and communication, itis at @6
better if g(¢) is chosen identically. Memory behavior causes this
surprising result. For some input data sizes, the workihgrs&12
processors fits within the L2 cache, which we determined bygus
PAPI [7] to inspect the Opteron performance counters. Orehe
tests, the number of L2 cache misses decreased by up to a facto
of six (instead of the expected factor of two) when increasing from
256 to 512 processors and holding all other input variabtes ¢
stant. This phenomenon affects the fit (whether linear odratic)
because the regression overcompensates: the predictetyithe
regression is too low for the 1024 processor tests. Thisdaulse
the regression expects the ratio of the 256 to 512 processtsrtb
be fairly similar to that of the 512 to 1024 processor tests,the
superlinear memory hierarchy effects only occur in the fexm
Second, unlike the compute-bound applications, commtioita
in CG is significant, even though it also decreases as the eumb
of processors increases. Because the computation and agoanu
tion times decrease at different rates, treating them aeggrim-
proves prediction quality compared to using a monolitheceion
time. Overall, the median error decreases from 16% whermgusin
tal execution time to 12% when separating the communicatiah
computation for CG.

SMG overview.SMG is written as a weak scaling application:
the input parameters specify a single cube size for eaclepsoc.

BT, Training with p=100,256,484

o
g |
—
s
5 g
g —
g °
g
5 .
o o o
L .
: ° °
s = i
° =————
T T T
100 256 484
TOT TOT TOT

Number of Training Processors — Model

LU, Training with p=128,256,512

o
3 4
-
o
5 o
o o o
g S
8
=
3 - °
& o | ! °
) l;|
L B= S—
T T T
128 256 512
TOT TOT TOT

Number of Training Processors — Model

EP, Training with p=128,256,512

o
3
-
s
i S
8 -
8
=
g
<3
¢ o |
)
o 4 e 8
T T T
128 256 512
ToT TOT TOT

Number of Training Processors — Model

Seconds (Log, scale)

Seconds (Log, scale)

Seconds (Log, scale)

50 200

10

BT, Training with p=484

N\
o
N 5\
N
N ‘Q\
N '\a
N \Q
7 N,
e}
N N
—e— Predicted Total °
N —|—— Measured
_|--- Perfect Speedup
T T T T T T T T T T T T T
1 4 16 64 256 1024 4096

200

10 20 50

5

2

5 10 20 50 200

2

Figure 5: Results for predicting EP on 1024 processors.

Processors (Log, scale)

Figure 3: Results for predicting BT on 1024 processors. Theight-hand graph shows results forproblem_size = 500.

LU, Training with p=512

—e— Predicted Total
—e— Measured

_|--- Perfect Speedup
T T 1 T T T T 71 T T 1

1 4 16 64 256 1024 4096

Processors (Log, scale)

Figure 4: Results for predicting LU on 1024 processors. Theight-hand graph shows results for all input variables equatfto 450.

EP, Training with p=512

.
i \'\

N '\

N @\

N ,\

N .\

N l\

—e— Predicted Total 3
“|—=— Measured \
_|--- Perfect Speedup °

T T 1 T T T T 71 T T 1
1 4 16 64 256 1024 4096

Processors (Log, scale)

Theght-hand graph shows results form = 234

Percentage Error

50

Figure 6: Results for predicting CG on 1024 processors. Theight-hand graph shows r

Percentage Error

50

Figure 7: Results for predicting SMG on 256 processors. Theight-hand graph shows results forDIM 1 = 300.

Percentage Error

50

Figure 8: Results for predicting SP on 1024 processors. Theght-hand graph shows results forproblem_size = 450.

Percentage Error

50

Figure 9: Results for predicting Sweep3d on 1024 processar3 he right-hand graph shows results for/T¢ = 400, JT¢ = 400, and

KTg = 400.

150

100

150

100

150

100

150

100

CG, Training with p=128,256,512

(MAX=368%) (MAX=276%)
-
— o
—_ i '
oL -
- E : B
as -
=
= — =
T T T T T T
128 256 512 128 256 512

SEP SEP SEP TOT TOT TOT
Number of Training Processors — Model

SMG, Training with p=32,64,128

32 64 128

T
32

64

128

SEP

SEP

SEP

TOT TOT TOT

Number of Training Processors — Model

SP, Training with p=100,256,484

o o 8
° o o
8 g
b4 8
o g e
] ° o
o
. - s T -
- . (<] L .
==
= = = =
T T T T T T
100 256 484 100 256 484

SEP

SEP

SEP

TOT TOT TOT

Number of Training Processors — Model

SWEEP3D, Training with p=128,256,512

—_

S g7
= -

- =

=
T T T T T T

128 256 512 128 256 512
SEP SEP SEP TOT TOT TOT
Number of Training Processors — Model

Percentage Error

50

Percentage Error

50

Percentage Error

50

Percentage Error

50

150

100

150

100

150

100

150

100

CG, Training with p=256

o o]
= =
T T T
Q/L/ICcP Q/Q/CP L/L/Max
Model

SMG, Training with p=128

—_— ——]
T T T
QQMax QIQ/CP LILICP

Model

SP, Training with p=484

° o
°
]
® 8
o
o o o
—_ —_
T T T
L/Q/Max Q/Q/Max QIQICP
Model

SWEEP3D, Training with p=512

= =
T T T
Q/QMax QILIMax LILICP
Model

Seconds (Log, scale)

Seconds (Log, scale)

Seconds (Log, scale)

Seconds (Log, scale)

500

50

500

50

10 20 50 200

5

2

5 10 20 50 200 500

“itded

CG, Training with p=256

Q/L/ICP RMSE=.11/.15
QI/QICP RMSE=.11/.15
L/L/IMax RMSE=.13/.16
Measured

Perfect Speedup

SRR Y

T 1 T T T T T T T T 1
4 16 64 256 1024 4096

Processors (Log, scale)

esults forNA = 2M and NONZER = 24.

SMG, Training with p=128

s=®
—e— Q/Q/Max RMSE=.03/.07 g
—8— Q/Q/CP RMSE=.03/.11
—— LILICP RMSE=.04/.18
—=— Measured
--- Perfect Speedup
T T T T T T T T T 1
1 4 16 64 256 1024

Processors (Log, scale)

SP, Training with p=484

L/Q/Max RMSE=.18/.18
L/L/IMax RMSE=.18/.18
QIL/ICP RMSE=.16/.26
Measured

Perfect Speedup

T T T T T T T T T T 1T
4 16 64 256 1024 4096

Processors (Log, scale)

SWEEP3D, Training with p=512

Q/Q/Max RMSE=.07/.09 | *

Q/L/IMax RMSE=.07/.11

L/L/ICP RMSE=.18/.26

Measured

Perfect Speedup N
T T T T T T T T T T

4 16 64 256 1024 4096

Processors (Log, scale)

We converted SMG to strong scaling by reducing the cubeisel
by half when we doubled the processor count. We could onty tes
up to 256 processors since using more than one processooger n

ear and quadratic for predicting 256 processors is much prare
nounced than with CG. The RMSE is often over twice as high for
a linear fit as a quadratic fit. The right-hand graph cleariywsh

causes SMG to run out of memory quickly on smaller processor that the quadratic fit predicts the observed times much hgteé

configurations.

Figure 7 (previous page) shows the results for SMG. The left-
hand graph shows that separating computation and comntiamica
makes a more significant difference than with CG (see alsdithe
cussion below). Unlike CG, increasing the number of promess
used for training always helps because SMG does not haveas pr
nounced differences in memory behavior. The middle graplwsh
that a quadratic regression for both computation and congaun
tion performs best.

SP overview Figure 8 (previous page) shows the results for SP.
The results are quite good; prediction error is always witt3%

median error using 128 processors to predict 256) than tieai
fits. The worst fit has a median error over 30% and worst case err
of over 60%. Thus, even if using RMSE to select the regression
method might provide only a small improvement, as with CG, se
lecting the regression method based on RMSE avoids cashs wit
very large error.

Finally, training with up to 128 processors clearly produpeor
results for CG. First, this is the one case where separating c
putation and communication actually hurt prediction aacyir(on
128 processors). As we have said, memory hierarchy effeets a
the problem. More generally, however, we need a method &r-det
mine the processor count required to produce good respitmri.

and as close as 8%. The primary difference between SP and theWe suggest predictingithin the training runs For example, in the

other communication intensive applications is that sepag@om-
putation and communication improves predictions only hglig
The one unusual aspect of our SP predictions is exactly the sa
that of CG: predictions using smaller numbers of proces&d8)
is better than larger numbers (484). As with CG, our inspecti
of hardware performance counters show that this is due toanem
hierarchy issues.

Sweep3d overviewsweep3d is an application with which we
intentionally stressed our prediction system, by choosifiyx 1
processor grid—which is not typical for this application.hig
caused any processor rank larger than the x-dimendiogn)(of
the data grid to be assigned no work and therefore simplyirema
idle. Figure 9 (previous page) shows that while predictioaliy is
not as good for Sweep3d as for the other applications, itisae-
able. The best median error is 17%, but the significant alyoit
change (which is Sweep3d-specific) limits the ability of RE®
select this regression. Sweep3d demonstrates the chediémging
any black box system. Clearly, a regression-based appno#ich
not generate high quality predictions in the (fairly undywease
when program behavior isastlydifferent when increasing the pro-
cessor configuration. With a program like Sweep3d—wifh & 1
processor grid—modest programmer input is needed fortae
dictions. We can probably limit this input to just the knodge of
when the granularity of work is too small to keep processosyb

Discussion.Generally speaking, training with as many proces-
sors as possible will produce a better fit. However, the ch&o
shows this does not always hold. Our system can detect when me
ory behavior is causing super-linear speedup, becauseatning
runs can collect the relevant performance counters. Howéve
ramification might be more training runs since machinesudfve

a relatively small number of performance counters and werare
terested in not just L1 and L2 cache misses, but, for exarajse,

local and remote references to memory caused by a NUMA archi-

tecture.
More importantly, we can choose the best fit within a processo

case of CG, we train with up to 16 processors, and investlyaie
that predicts 128 processors. The results show significaat, e
an indication that training with up to 128 processors withgmce
poor results when predicting 1024 processors. As a congrange
used the same method for LU, and predictions within the itngin
set were quite good—and when 128 processors were used, 1024
processor predictions were accurate. However, we need evere
idence to verify that this approach works consistently, alihive
leave to future work.

5. RELATED WORK

We extend on a significant body of prior work. Many re-
searchers have explored predicting performance of pheadidi-
cations. Most prior work either predicts for processor deex-
plored on other systems or uses extensive manual analydesit@
analytic models.

The work most closely related to ours uses various regresgio
proaches to predict application performance across a i@frigput
parameter values. For example, neural networks model tlzepa
eter space to predict execution time, generally with erodrs0%
or less [15]. Direct comparisons demonstrated that pieseepily-
nomial regression provides similar accuracy [18]. Unlikese pre-
vious regression-based approaches, we identify techsitqpuesepa-
rate computation and communication that support extrapolsito
larger processor counts.

Many other black-box modeling approaches exist. Lygoral.
reason about execution behavior using Taylor expansiodster-
mine scalability properties [19]. This more theoreticapagach
is complementary to our empirical approach and could cameep
ally be used in tandem with it. Another black box techniqué] [3
predicts performance across platforms through partiatw@i@n of
iterative programs but is restricted to the system sized fmethe
partial executions. A final approach is to use a combinatf@tedic
and dynamic analysis to predict performance on differecttisec-
tures for different inputs [20] (and in later work, the apgehb is
extended to find performance bottlenecks [21]). This apgrdeas
the advantage of avoiding runs on different hardware agchites,

configuration based on RMSE even though we cannot easily usebut requires compiler infrastructure that can be diffioniintegrate

it to compare across different processor configurationsiodgh
SP and SMG, we see two different extremes of the disparityt in fi

quality. For SP, using RMSE determined that we should use the

critical path technique to separate computation and conzation
times. However, the RMSE difference, and the differencetin fi
quality, are small, as Figure 8 shows.

For SMG, the difference in fit quality is quite significant. &h
middle graph in Figure 7 shows that the difference between li

into existing application build environments. Our framekvonly
requires only relinking of the application with the PMPIrkipy.
MetaSim provides a general performance modeling frame-
work [29]. MetaSim uses Atom [30] or other instrumentation
mechanisms like Dyninst [8] to gather memory traces, whient
support simulation of memory performance on a variety ohiarc
tectures. MetaSim extends those results to a distributedane
setting with Dimemas [17], which consumes an MPI trace to sim

ulate network performance. The memory and MPI traces adge tie
to the original processor count and, thus, unlike our apgrothis
work does not support scaling predictions.

Kerbyson et al. derive an analytical performance modelter t
ASCI Sage application [16]. This white-box approach reggiie-
tailed analysis of data structures and program constreat) as
loop nests. They combine this analysis with microbenchmtrét
measure basic machine characteristics such as networkpryem
and computation capability. This powerful approach dogmpstt
scaling predictions. However, it requires significant perfance
analysis effort that would be difficult, if not impossible auto-
mate. Our approach is mostly automated and requires litdé/Ec
effort. Brehmet al. make predictions using regression, including
ones that separate computation and communication [6].r Hpei
proach requires creating computation and communicatiodefso
for the program that is being modeled. Several other rebeesc
have explored similar white-box scalability analysis azmhes,
both from an algorithmic and an architectural perspecth& B3,
23, 9, 28, 32]. In general, they derive application or aegttiire
specific models through detailed analysis, which requirgsifs
icant effort that is not readily automated. Other white-kap¢
proaches, such anodeling assertionfl], require code modifica-
tions in order to predict workload and memaory requireme@sr
techniques at most use the MPI profiling interface for inseata-
tion, which only requires relinking the application.

Many have investigated analytic modeling of parallel maekhi
The best known examples are LogP [10] and BSP [31]. The for-
mer uses latency, overhead, gap, and number of processdes to
termine an effective parallel algorithm while the latteesisuper-
stepsto indicate computational phases, which are terminated by
communication points. Both of these techniques requinaiféignt
programmer intervention. For example, with LogP, while pine-
grammer can model a computational step as taking conshaey iti
is still necessary to model the communication that existsipely.
As the number of processors increases, this becomes inmybas
challenging. Another approach requires no user intergart cre-
ate a static cost model [4]. However, it has so far only beed us
effectively for simple programs and on simple architecture

Several tools trace or analyze MPI performance through the
MPI profiling interface, including VampirTrace [22], svRaljl1],
TAU/ParaProf [5], and Paraver [25], just to name a few. Mdst o
these tools focus on providing assistance in optimizingliegp
tions, particularly for very large processor counts [26}evous
work focusing on optimization has investigated technicioesap-
ture the critical path in MPI programs [14, 27]; we build oreth
algorithm developed by Schulz [27] in our work.

6. SUMMARY AND FUTURE WORK

This paper has contributed a new black-box technique tagired
parallel program scaling behavior. The basic idea is to usk m
tivariate regression to predict the performance on largegssor
configurations using training data obtained from smallenbers
of processors.

Our results are encouraging. The error of our predictioms fo

programs up to 1024 processors was in most cases 13% or less[11]

We showed that we can formulate several different predistio
based on the training data and that the one with the lowest roo
mean-squared-error generally provides the best prediciie also
showed that understanding memory behavior—specificadlyct
pacity of different memory hierarchy levels—is criticalnmaking
good predictions.

Future Work. This work represents the beginning of our effort to
achieve accurate predictions of parallel programs, anchrfutare
work remains to be done. Our next task is to experiment witfela
processor configurations; while the number of processard urs
training will also be larger, it remains to be seen what happe
prediction accuracy. Second, we need to investigate mqokcap
tions, including ones that exhibit load imbalance. Thira will
investigate further ways to determine the smallest number@
cessors for training that will produce quality predictiorfourth,
we are investigating a novel clustering scheme to predicerao-
curately the effect of the memory hierarchy on computatioret
Finally, we will further refine communication predictiong bepa-
rately modeling calls that scale differently.

7. REFERENCES

[1] S. R. Alam and J. S. Vetter. Hierarchical model validatas
symbolic performance models of scientific applications. In
Euro-Par, Aug. 2006.
S. R. Alam, J. S. Vetter, P. K. Agarwal, and A. Geist.
Performance characterization of molecular dynamics
techniques for biomolecular simulations.RMPOPR pages
59-68, Mar 2006.
D. Bailey, J. Barton, T. Lasinski, and H. Simon. The NAS
parallel benchmarks. RNR-91-002, NASA Ames Research
Center, Aug. 1991.
[4] V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. An
static performance estimator to guide data partitioning
decisions. IrProceedings of the Third ACM SIGPLAN
Symposium on Principles and Practices of Parallel
Programming pages 213-223, Apr. 1991.
R. Bell, A. Malony, and S. Shende. ParaProf: A Portable,
Extensible, and Scalable Tool for Parallel Performance
Profile Analysis. InProceedings of the International
Conference on Parallel and Distributed Computing
(Euro-Par 2003) pages 17-26, Aug. 2003.
[6] J. Brehm, P. H. Worley, and M. Madhukar. Performance
modeling for SPMD message-passing programs.
Concurrency: Practice and ExperiencH(5):333-357, Apr.
1998.
S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci
A scalable cross-platform infrastructure for application
performance tuning using hardware counters. In
SupercomputingNov. 2000.
B. Buck and J. K. Hollingsworth. An API for runtime code
patching.The International Journal of High Performance
Computing Applicationsl4(4):317—-329, Winter 2000.
G. Carey, J. Schmidt, V. Singh, and D. Yelton. A scalable,
object-oriented finite element solver for partial diffetiah
equations on multicomputers. International Conference on
Supercomputingpages 387-396, 1992.
D. Culler, R. Karp, D. Patterson, A. Sahay, E. Santos,
K. Schauser, R. Subramonian, and T. von Eicken. LogP: A
practical model of parallel computatioBommunications of
the ACM 39(11):78-85, Nov. 1996.
L. DeRose and D. A. Reed. SvPablo: A multi-language
architecture-independent performance analysis system. |
Proceedings of the International Conference on Parallel
Processing (ICPP’99)Sept. 1999.
[12] T. R. P. for Statistical Computing. http://www.r-peajt.org/.
[13] J. L. Gustafson. Reevaluating Amdahl’s law.
Communications of the ACM1(5):532-533, May 1988.

(2]

(3]

(5]

(7]

(8]

(9]

[10]

[14] J. K. Hollingsworth. Critical path profiling of message
passing and shared-memory progratBEE Transactions
on Parallel and Distributed Systen®(10):29-40, 1998.

[15] E. Ipek, B. R. de Supinski, M. Schulz, and S. A. McKee. An

approach to performance prediction for parallel apploati

In Euro-Par, pages 196-205, Aug 2005.

D. Kerbyson, H. Alme, A. Hoisie, F. Petrini, H. Wassemma

and M. Gittings. Predictive performance and scalability

modeling of a large-scale application.$upercomputing

Nov. 2001.

J. Labarta, S. Girona, V. Pillet, and T. Cortes. DiP: Agikl

program development environmehecture Notes in

Computer Science124:665—-??, 1996.

B. C. Lee, D. M. Brooks, B. R. de Supinski, M. Schulz,

K. Singh, and S. A. McKee. Methods of inference and

learning for performance modeling of parallel application

In PPOPR, pages 249-258, 2007.

G. Lyon, R. Kacker, and A. Linz. A scalability test for

parallel codeSoftware — Practice and Experience

25(12):1299-1314, Dec. 1995.

G. Marin and J. Mellor-Crummey. Cross-architecture

performance predictions for scientific applications using

parameterized models. BIGMETRICS 20Q4ages 2-13,

June 2004.

G. Marin and J. Mellor-Crummey. Application insight

through performance modeling. IREE International

Performance Computing and Communications Conference

Apr 2007.

M. Miiller, H. Brunst, M. Jurenz, A. Knuipfer, M. Lieber,

H. Mix, and W. Nagel. Developing Scalable Applications

with Vampir, VampirServer and VampirTrace. In

Proceedings of the Minisymposium on Scalability and

Usability of HPC Programming Tools at PARCO 2007, to

appear Sept. 2007.

D. Nussbaum and A. Agarwal. Scalability of parallel

machinesCommunications of the ACN84(3):56—61, Mar.

1991.

F. Petrini, D. J. Kerbyson, and S. Pakin. The case of the

missing supercomputer performance: Achieving optimal

performance on the 8,192 processors of ASCI Q. In

Supercomputing2003.

V. Pillet, J. Labarta, T. Cortes, and S. Girona. PARAVER

tool to visualise and analyze parallel codePirmceedings of

WOoTUG-18: Transputer and Occam Developments

volume 44 ofTransputer and Occam Engineeringages

17-31, Apr. 1995.

P. C. Roth and B. P. Miller. On-line automated perforicen

diagnosis on thousands of processe$?ROPPE, pages

69-80, Mar 2006.

[27] M. Schulz. Extracting critical path graphs from MPI
applications. INEEE Cluster Sep 2005.

[28] J. P. Singh, J. L. Hennessy, and A. Gupta. Scaling grall
programs for multiprocessors: Methodology and examples.
IEEE Computer26(7):42-50, July 1993.

[29] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Bad
and A. Purkayastha. A framework for performance modeling
and prediction. IrBupercomputingNov. 2002.

[30] A. Srivastava and A. Eustace. ATOM: A system for builglin
customized program analysis tools AGM SIGPLAN
Conference on Programming Language Design and
Implementationpages 196—205, June 1994.

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

[31] L. Valiant. A bridging model for parallel computation.
Communications of the ACN3(8):103-111, Aug. 1990.

[32] F. C. Wong, R. P. Martin, R. H. Arpaci-Dusseau, and D. E.
Culler. Architectural requirements and scalability of &S
Parallel Benchmarks. IBupercomputingl999.

[33] P. H. Worley. The effect of time constraints on scaled
speedupSIAM J. Sci. Stat. Computing1(5):838-858, Sept.
1990.

[34] L. T. Yang, X. Ma, and F. Mueller. Cross-platform
performance prediction of parallel applications usingiphr
execution. INSupercomputing?2005.

