
A Regression-Based Approach to Scalability Prediction∗

Bradley J. Barnes
Dept. of Computer Science
The University of Georgia
barnes@cs.uga.edu

Barry Rountree
Dept. of Computer Science
The University of Georgia
rountree@cs.uga.edu

David K. Lowenthal
Dept. of Computer Science
The University of Georgia

dkl@cs.uga.edu

Jaxk Reeves
Department of Statistics

The University of Georgia
jaxk@stat.uga.edu

Bronis de Supinski
Lawrence Livermore
National Laboratory
bronis@llnl.gov

Martin Schulz
Lawrence Livermore
National Laboratory
schulzm@llnl.gov

ABSTRACT
Many applied scientific domains are increasingly relying onlarge-
scale parallel computation. Consequently, many large clusters now
have thousands of processors. However, the ideal number of pro-
cessors to use for these scientific applications varies withboth the
input variables and the machine under consideration, and predict-
ing this processor count is rarely straightforward. Accurate pre-
diction mechanisms would provide many benefits, including im-
proving cluster efficiency and identifying system configuration or
hardware issues that impede performance.

We explore novel regression-based approaches to predict parallel
program scalability. We use several program executions on asmall
subset of the processors to predict execution time on largernum-
bers of processors. We compare three different regression-based
techniques: one based on execution time only; another that uses
per-processor information only; and a third one based on theglobal
critical path. These techniques provide accurate scaling predic-
tions, with median prediction errors between 6.2% and 17.3%for
seven applications.

Categories and Subject Descriptors
I.6.5 [Model Development]: Modeling Methodologies

General Terms
Measurement, Experimentation

Keywords
Modeling, MPI, Prediction, Regression, Scalability

∗This work was supported by NSF grant CCF-0429285. Part of this
work was performed under the auspices of the U.S. Departmentof
Energy by Lawrence Livermore National Laboratory under Con-
tract DE-AC52-07NA27344. (LLNL-CONF-400700).

Copyright 2008 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored byan employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
ICS’08,June 7–12, 2008, Island of Kos, Aegean Sea, Greece.
Copyright 2008 ACM 978-1-60558-158-3/08/06 ...$5.00.

0
20

00
0

40
00

0
60

00
0

80
00

0

Time for 2 minute jobs to run

Number of Nodes

T
im

e
(m

in
ut

es
)

4 8 16 32 64 128 256

Figure 1: Median time for a short application to commence ex-
ecution on the LLNL “Thunder” cluster when requesting dif-
ferent node counts. The system had 986 nodes.

1. INTRODUCTION
Nearly all applied sciences today rely on parallel computation.

Applications from a wide variety of domains run on large sys-
tems with thousands of processors, such as BlueGene/L. However,
these applications often achieve poor speedup and thus pooreffi-
ciency. For example, Alam et al. [2] characterized performance for
a biomolecular simulation and found that one time-consuming part
of the program achieved a speedup of only 10 on 1024 processors.

This inefficiency is costly to both the owners and the users of
the systems. To the supercomputer center, it wastes the system in
terms of money and possibly power consumption. To the user, it
reduces system availability because other users allocate more pro-
cessors than necessary. A mechanism to predict the parallelef-
ficiency of applications—without having to understand their low-
level details and without executing them at scale—could help in-
crease availability. Application scientists could use themechanism
to determine how many processors to request so their applications
run quickly without wasting resources beyond the point at which
they achieve good speedup. The improved efficiency would not
only reduce demand on the system’s resources but would gener-
ally reduce response time for the specific application. For exam-
ple, Figure 1 shows that the worst-case time to acquire nodesap-
pears to increase exponentially in the number of nodes. In our own
experience—carrying out experiments for the performance section
of this paper—it took nearly a month to be granted 256 nodes for
one of our applications.

System procurement decisions are often based on results from

prototype systems with many fewer processors than the system that
will eventually be purchased. An accurate prediction mechanism
that indicates what performance will be achieved on the larger (as
yet unbuilt) system could improve its suitability for its actual work-
load. Predictions can also guide optimization and provide system
diagnostics, for example identifying when operating system activ-
ity interferes with expected performance [24] or when non-uniform
memory access necessitates finer control of processor to memory
mappings.

We investigate three techniques based on regression for predict-
ing parallel program scalability. These techniques use several ex-
ecutions with different input sets on asmall subset of the proces-
sorsto predict performance on a larger number of processors. Our
first technique is the most straightforward: simply fit totalexecu-
tion time from the data collected on training runs to a regression
and extrapolate to larger configurations. This simple technique
works well for some cases if we use a reasonable prediction func-
tion (a second-order polynomial). Our other two techniquesre-
fine this approach by handling computation and communication
separately. One technique relies only on per-processor informa-
tion; it gathers the computation and communication times ofeach
processor, chooses the most representative pair, and separately re-
gresses on each to form a prediction. Our third technique, unlike
the per-processor method, ensures communication time never in-
cludes blocking by calculating computation and communication
time via identification of the (global) critical path. Both techniques
that separate communication from computation improve prediction
quality in the common case that both quantities are significant.

This paper makes several contributions. First, we show that
the simple, “black-box” technique of regression can often accu-
rately predict performance on a larger processor count. Second,
we present a novel technique—separate regression on computation
and communication—that improves prediction accuracy for pro-
cessor counts at which applications scale poorly. Third, weiden-
tify two potential refinements to make higher-quality predictions:
better prediction functions and special handling of memoryanoma-
lies, including both NUMA and cache capacity effects. Fourth, our
predictions for seven applications at processor counts up to 1024,
based on runs on as few as 128 processors, demonstrate that ac-
curate extrapolation of scaling behavior is possible. Specifically,
we achieved median prediction errors of between 6.2% and 17.3%
over all nontrivial programs. This includes Sweep3d, wherewe
specifically chose a configuration that would obscure scaling be-
havior. We also provide a mechanism to estimate how large proces-
sor counts for training runs need to be for an accurate prediction.

The rest of this paper is organized as follows. Section 2 describes
our techniques for performance prediction. Next, we describe our
experimental methodology in Section 3 and the results of using our
techniques on seven applications in Section 4. Finally, Section 5
places our approach in the context of prior work, while Section 6
summarizes our findings and future directions.

2. PERFORMANCE PREDICTION
This section describes our prediction techniques. We startwith

definitions along with our assumptions and then detail our basic
regression-based approach. Finally, we describe our threetech-
niques.

2.1 Definitions and Assumptions
In this paper aprocessor configurationis simply a set of pro-

cessors, with one or more processors (or cores) on each node.We
investigate predictions usingstrong scalingwhere possible, where
the total working set size is fixed over all processor configurations.

In some cases, strong scaling is impractical because of memory re-
quirements at low-end processor counts, and in those cases we use
a hybrid of strong scaling along withweak scaling. Applications
that use weak scaling increase their total working set size propor-
tionally as the number of processors increases, while the working
set for each processor remains constant.

We make several assumptions in this work. First, we assume
that all input variables to a given program (such as data set size
and processor grid dimensions) are available to us. This is area-
sonable assumption, as most high-performance computing appli-
cations use (sometimes complex) configuration files that specify
the input variables directly. Next, we assume that we know which
input variables (e.g., sizes/constants given typically ininput files)
contribute significantly to execution time. Known techniques exist
to find these variables [18]. Our procedure models executiontime
as some function of these input variables. The quality of ourmodel
depends on considering all important input variables when build-
ing the model. We also assume that the computational load is well
balanced; we will explore load imbalance in future work. Finally,
we assume that a program can be run using any configuration of
the input variables. While this does not always hold—for exam-
ple, many of the NAS Parallel Benchmarks [3] constrain the values
of the input variables—we overrode this limitation in our training
sets.

2.2 Approach
We predict execution time of a given program onp processors us-

ing several instrumented runs of the same program onq processors,
whereq ∈ {2, . . . , p0}, p0 < p, andp is arbitrary. We vary the val-
ues of the input variables (x1, x2, . . ., xn) on the instrumented runs.
Because it is easier to acquireq processors thanp, it is reasonable
to perform many instrumented runs for different configurations of
the input variables. We then use the relationship between the input
variables and the observed execution time to develop a predictor,
T̂ , of the execution timeT :

T̂ = F (x1, x2, . . . , xn, q). (1)

The idea is that̂T ≈ T , with small error. Once we determinêT ,
we use it to predict execution time for any arbitrary input variable
set (a1, a2, . . ., an) andp processors. We emphasize that we pro-
duceT̂ without any data from runs usingp processors , since we
choosep0 < p.

The scale in which the error between̂T and the trueT is mea-
sured is crucial. For most applications, variability increases asT
increases, so we use relative error:

E = |(T − T̂)|/T (2)

Thus, our functionF should minimize this relative error, sub-
ject to some feasibility constraints. Evaluation of different mod-
els in terms of relative error depends heavily on the input vari-
ables. Ideally, the functionF minimizes the relative error by in-
telligent choices of the training set, i.e., the sets of input variables
(x1, x2, . . . , xn) and number of processors (q) used to build the
model.

Because we use relative error to evaluate models,F should be fit
to T in log-scale. The particular log-scale (e.g.,log

2
or log

10
) does

not matter statistically; we uselog
2

and fit models of the form:

log2(T) = log2(F (x1, x2, . . . , xn, q)) + error (3)

such that the error is minimized inlog
2
-scale. We can convert an

individual log
2
-scale error (e) into a relative error (RE): RE =

2|e| − 1. However, for statistical accuracy we must minimize error
in the log-scale when evaluating a model’s fit over different input

configurations. If we minimized error in the untransformed(T)
scale, errors at the largest values ofT would completely dominate
those at smallerT values, making the model inaccurate.

Parameterization of thelog2(F (x1, x2, . . . , xn, q)) function is
critical. A linear model like

log2(T) = β0 + β1 log
2
(x1) + β2 log

2
(x2) + . . .

+βn log
2
(xn) + βq log

2
(q) + error (4)

provides a reasonable first approximation, although it is too simple
to capture the behavior of some applications. Statisticians refer to
this as a linear model, since it is linear in the unknown parame-
ters (β0, β1, . . . , βq) that are estimated so as to minimize the sum
of squared error (in log-scale). In engineering contexts, one might
call this a “log-log” model, becauselog

2
is applied to both sides

of Equation 3 to obtain Equation 4, but it is a linear model in the
statistical sense, which means we can employ the vast statistical
theory of linear models (of which multiple regression is a subset).
The right-hand side of Equation 4 can be made considerably more
general while remaining a linear model in the statistical sense. For
example, one could include quadratic terms such as(log2(xi)

2)
or interaction terms such aslog2(xi) ∗ log2(xj), or even try other
transformations of the input variables, such asxi or

√
xi rather

than log2(xi). Our results for the seven applications that we ex-
amine show that most of the variability due to the input variables
(x1, x2, . . . , xn) is explained by models of the form:

log2(T) = β1 log
2
(x1) + β2 log

2
(x2) + . . .

+βn log
2
(xn) + g(q) + error (5)

Thus, we focus on finding a good-fitting but parsimonious function
g(q) that explains the effect of the number of processors,q. For
three of the applications that we examine in Section 4, the simple
linear function:

g(q) = γ0 + γ1 log
2
(q) (6)

is best, while quadratic (inlog
2
(q)) models, where there is an ad-

ditional termγ2(log
2
(q))2, fit the other four applications better.

In general, we could use more complexg(q) functions or include
more parameters (βi in the linear model). However, at some point
the model adjustments will fit the sample data beyond their relation
to the predicted input configurations. In this work we therefore do
not consider higher-order polynomials.

2.3 Techniques
Our most straightforward approach uses the total executiontime

for T in Equation 5. Considering the two possible forms ofg(q)
above, we have two possible ways to modelT . Gathering the input
for this approach is simple because our applications all report their
execution times. We show in Section 4 that predictions usingre-
gression based solely on total execution time are effectivein some
cases.

However, computation and communication typically scale dif-
ferently as processor count changes. To address this, we developed
two techniques that separate computation and communication. The
amount of computation in parallelizable code regions will generally
scale proportionally to the increase in the number of processors,
which holds for strong scaling of load balanced applications. On
the other hand, the behavior of communication time as the number
of processors increases depends on the application. While it often
increases with rising numbers of processors, our experiments also
show some cases of decreasing communication time.

Our second approach uses the maximum computation time
across all processors and the communication time from that same

critical path

P

Q

R

Q last

wait 2s

no wait

Figure 2: Critical path: P , Q, and R are MPI tasks with edges
representing messages.

processor. We use the PMPI profiling interface to wrap all MPI
calls to measure both quantities. Because our applicationsare well
balanced computationally, the communication time usuallycon-
tains the minimum amount of blocking time over all processors.

Our third technique avoids blocking time altogether by focusing
on the parallel execution’scritical path, the longest execution se-
quencewithout blocking. The critical path determines the execution
time of a parallel program as Figure 2 shows. Any communication
time on this path is purely communication (i.e., sending/receiving),
which helps our model avoid overestimating it.

For each technique to separate computation and communication,
we can fit the computation time two ways and fit the communi-
cation time two ways because we consider two possible forms for
g(q). Combined with two possible ways to split computation and
communication, we therefore consider eight possible ways to pre-
dict total execution time when separating computation and commu-
nication.

3. EXPERIMENTAL METHODOLOGY
We tested our techniques using seven applications: five fromthe

NAS suite and two from the ASC Purple/Blue suites. The NAS
codes are BT and SP, which are computational fluid dynamic (CFD)
applications that use different solution approaches; CG, an unstruc-
tured sparse linear solver; EP, an embarassingly parallel program;
and LU, a lower- and upper-triangular solution to implicit CFD
problems. We omit some NAS programs because of their inher-
ent constraints. Specifically, MG, FT, and IS require that the input
sizes be powers of two, which does not allow us enough tests to
achieve a statistically significant result. The ASC applications are
SMG, a multigrid code, and Sweep3d, a 3D neutron transport code.

We make predictions of programs running onp processors us-
ing three different processor configurations for training:p0 = p/8,
p0 = p/4, andp0 = p/2. We follow this in our experiments below
as closely as possible; BT and SP require a number of processors
that is a perfect square, so we chose even-numbered processor con-
figurations as close as possible to powers of two.

We currently make the decision as to whether to separate com-
putation and communication as follows. We separate if either (1) a
program is not computation bound or (2) communication time in-
creases with processors. The threshold for deeming an application
computation bound is currently 90% (average) computation for any
processor configuration used during training (on both the per-node
maximum and the critical path techniques).

Recall that we regress on the input variables that contribute sig-
nificantly to execution time as well asq, the number of processors.
Table 1 shows the relevant input variables and the ranges that we
used for our seven applications. The applications are all iterative,
yet balance the work across the processors; thus, we do not include
iteration count as a predictor variable. We use strong scaling with
BT, CG, SMG and Sweep3d while we use use a hybrid of strong
and weak scaling in which we increase the problem size on large

Application Name 1 Range Name 2 Range Name 3 Range Training runs per proc. count
BT problem_size 20–500 – – – – 24
CG NA 500K–3M NONZER 14–24 – – 24
EP m 228–238 – – – – 29
LU isiz1 200–1000 isiz2 200–1000 isiz3 200–1000 16

SMG DIM1 290–315 DIM2 290–315 DIM3 290–315 54
SP problem_size 40–1400 – – – – 35

Sweep3d IT G 300–500 JT G 300–500 KTG 300–500 64

Table 1: The seven applications and their input variable names and ranges.

processor counts to get reasonable execution times with EP,SP and
LU.

We observe results (T) for each instrumented run onq processors
and fit a linear model of the form given in Equation 5 for various
g(q). For a specifiedg(q), the set ofβi returned by the regres-
sion function are those that minimize the sum of squared error. The
root-mean-squared-error (RMSE) for a particular regression mea-
sures the typical error inlog

2
-scale when using the specified regres-

sion function to fit execution times over all input configurations of
(x1, x2, . . . , xn, q). As mentioned above, we choose the function
g(q) to be a second order polynomial, which we found sufficient
for our experiments.

We use the statistical package R [12] for all regressions. We
emphasize that we run the program only on a small subset of the
many possible input variable/processor combinations. Generally,
we allowed between 10-30 training runs per input variable. For the
purposes of verification, we also run the program at the predicted
processor count,p. We use the execution times,T , onp processors
to evaluate how well a proposed function actually predicts arun
on p processors, while the regressions we use to predict time onp
processorsdo notinclude these results.

4. RESULTS
This section discusses results of our performance prediction

techniques. We used the “Atlas” cluster, which has 1152 four-way
AMD Opteron nodes, for all experiments. Each CPU has two cores
running at 2.4 GHz, a 128KB split L1 cache, a 1MB L2 cache, and
16GB RAM. Each Opteron node is a NUMA architecture because
each CPU has one quarter of the memory connected to a local on-
chip memory controller, while the rest must be accessed through
remote memory controllers inside the remaining CPUs, whichin-
curs longer memory latencies. Hereafter, we use the term processor
to refer to a core to avoid confusion. We restrict our experiments
to four processors per node since using all processors on a node
risks high variance [24]. Atlas uses a priority-based batchqueue-
ing system that limited our ability to run sufficient experiments to
(a maximum of) 1024 processors.

Because Atlas nodes have a NUMA architecture, we used
cpu_bind to ensure that Linux allocated memory for each pro-
cessor locally. Separate experiments showed that Linux allocations
do not otherwise account for locality, which leads to large,highly
unpredictable variance in execution times with identical input vari-
ables.

4.1 Summary of Results
We present the full results of our experiments in Sections 4.3 and

4.4 while Table 2 shows the median percentage error over all ex-
periments for each application. All predictions are for 1024 except
for SMG, which uses 256 due to memory limitations. We show the
best and worst errors both for regressing ontotal execution time
and (if applicable) for regressing on theseparatetimes. For each,

we also (if applicable) list the permutation that we used (type of fit
and whether we used the critical path or maximum per-processor
computation; when regressing on total time, there is no split and so
only one degree of freedom). More details are given in Sections 4.2,
4.3, and 4.4.

We make the following general observations. First, prediction
quality is often quite good, even on as few asp0 = p/8 processors.
Second, prediction quality for communication intensive applica-
tions is, except in one case (CG withp0 = p/8), equal or better
when we treat computation and communication separately (assum-
ing that there is enough communication to merit separating). Third,
CG is the primary case in which prediction quality onp0 = p/8
processors is poor. Finally, CG is also the one case in which pre-
diction quality for separate regression is better onp0 = p/4 pro-
cessors than onp0 = p/2 processors. We discuss these issues,
including how we might infer them automatically, in Section4.4.

4.2 Format of Detailed Results
We show two graphs for computation-bound applications and

three for communication intensive applications. The first (left-
most) graph is a boxplot that shows the median, minimum, and
maximum error for predicting 1024-processor performance (again,
SMG uses 256 processors due to per-node memory limitations)
using the three next largest processor configurations (e.g., for the
1024 processor tests, we use values of 128, 256, and 512 forp0).
The reported median, minimum, and maximum errors represent
values overall permutations of the input variables (small circles
represent outliers). As we explore different fits to model compu-
tation and communication, these boxplots display the prediction
results. The way we chose the prediction model is as follows.
For the total execution time prediction (TOT), we chose a linear
or quadratic fit based on lowest root-mean-squared-error (RMSE).
Additionally, if the program is considered communication intensive
(see Section 3), then for the predictions when separating computa-
tion and communication (SEP), we chose the model with the lowest
weighted average RMSE. That is, we weighted the RMSE for com-
putation and communication by the percentage each contributed to
total execution time onp0 processors.

The middle graph (shown only for communication intensive ap-
plications) investigates three different models that treat computa-
tion and communication separately. This includes prediction using
values of all input variables, including number of processors. Re-
call from Section 3 we have eight possible models when regress-
ing separately. For readability, we chose three of these eight pos-
sibilities: the one with the smallest, second smallest, andlargest
weighted average RMSE. Each of the three alternatives are labeled
with a three-tuple that represents the type of fit used for computa-
tion and communication, respectively (Q or L for quadratic or lin-
ear), and whether the critical path (CP) or maximum per-processor
computation (MAX) was used to separate the two quantities.

Finally, the rightmost graph shows the quality of the fit obtained

Application Median Error, Total Type (Best) Median Error, Separate Type (Best)
Best (Procs) Worst (Procs) Best (Procs) Worst (Procs)

BT 6.7% (484) 13.0% (100) L — — —
CG 16.0% (256) 120% (128) L 12.2% (256) 66.3% (128) Q/L/CP
EP 0.1% (512) 0.6% (128) L — — —
LU 13.8% (512) 15.8% (128) Q — — —
SP 7.7% (100) 12.8% (256) L 7.7% (100) 12.1% (256) L/Q/Max

SMG 14.4% (128) 92.7% (32) Q 6.7% (128) 25.6% (32) Q/Q/Max
Sweep3d 32.8% (512) 59.3% (256) Q 17.3% (512) 33.2% (128) Q/Q/Max

Table 2: Summary of results for all applications. The best and worst median errors are shown, both when regressing on total
execution time and (if applicable) separately on computation and communication. For each, the number of processors used for
prediction is shown. The right-most column shows, for the best error, what type of regressions (linear vs. quadratic) and which type
of separation (critical path vs. maximum), if any, are used.

(over all processor configurations) using the three alternatives in
the middle graph. This is forone particular permutation of the
input variables, and this permutation is listed in the caption. We
also graph the measured time and, for reference, baseline linear
speedup relative to the smallest processor configuration. Finally,
we extend the predictions to show our model results for processor
counts beyond those with which we experimented.

4.3 Computation-Bound Applications
We first discuss applications for which computation time is dom-

inant. This includes three applications: BT, EP, and LU. We first
give an overview of all three applications, and then we coverBT
in depth (the characteristics of LU are similar, and EP is a trivial
application).

BT overview.BT yields nearly linear speedup up to 1024 pro-
cessors, as shown in Figure 3, which makes it a straightforward
application to predict. The left-hand figure shows that a linear func-
tion for g(q) using total execution time to make predictions using
1024 processors always has a median error no more than 13%—it
is 13% when using 100 processors for prediction, 7.2% when using
256 processors, and 6.7% when using 484 processors. The simplic-
ity of modeling BT leads to scaling predictions (right-handgraph)
that match the measured execution time almost perfectly.

LU overview.Like BT, LU yields good speedup (see Figure 4).
While the results forp0 = p/8 are good (14%) when considering
the median, the worst case (not including outliers) is slightly over
50%. This error arises due to tests with small run times.

EP overview.EP is a rather straightforward application. Its only
communication is at MPI initialization and at the end of the pro-
gram (a barrier). Essentially, any technique works well to predict
execution time for EP (our error was well below 1%; see Figure5).

Discussion.BT scales nearly perfectly because it has very little
communication and a balanced computational workload. Because
Atlas has no local disks to use for swap space, we were limited
to relatively small input sizes for BT in order to fit the problem
into the memory of smaller processor configurations, which lim-
its the communication time. Thus, we omitted two experiments
with extremely small run times—less than one-half of a second;
they are outliers with a large relative error, but are not indicative
of any other results. Moreover, unlike many parallel programs, the
communication time for BT actuallydecreaseswith an increase in
the number of processors, meaning that the small amount of com-
munication that is present using small numbers of processors will

get even smaller when using larger numbers of processors. Thus,
we conclude that regressing separately on computation and com-
munication is not necessary for BT, as it is not for LU and EP. As
mentioned earlier, we only regress separately when either (1) both
computation and communication are significant or (2) communica-
tion is increasing.

4.4 Communication Intensive Applications
We next discuss applications for which there is a mix of com-

putation and communication. Separating computation and commu-
nication is generally more important for these applications. This
class includes four applications: CG, SMG, SP and Sweep3d; we
present results in detail for CG and SMG.

CG overview.CG is significantly more difficult to predict than
any of the compute-bound applications. The results are shown in
Figure 6 and show several interesting characteristics of CG.

First, the left-hand graph shows that when predicting 1024 pro-
cessors and training with 256 processors, prediction quality is bet-
ter than when training with 512 processors. The median error
(for predicting total time using the best available fit, which is a
quadratic) is 12% lower when training with 256 processors, and,
when separating computation and communication, it is at least 10%
better if g(q) is chosen identically. Memory behavior causes this
surprising result. For some input data sizes, the working set on 512
processors fits within the L2 cache, which we determined by using
PAPI [7] to inspect the Opteron performance counters. On these
tests, the number of L2 cache misses decreased by up to a factor
of six (instead of the expected factor of two) when increasing from
256 to 512 processors and holding all other input variables con-
stant. This phenomenon affects the fit (whether linear or quadratic)
because the regression overcompensates: the predicted time by the
regression is too low for the 1024 processor tests. This is because
the regression expects the ratio of the 256 to 512 processor tests to
be fairly similar to that of the 512 to 1024 processor tests, but the
superlinear memory hierarchy effects only occur in the former.

Second, unlike the compute-bound applications, communication
in CG is significant, even though it also decreases as the number
of processors increases. Because the computation and communica-
tion times decrease at different rates, treating them separately im-
proves prediction quality compared to using a monolithic execution
time. Overall, the median error decreases from 16% when using to-
tal execution time to 12% when separating the communicationand
computation for CG.

SMG overview.SMG is written as a weak scaling application:
the input parameters specify a single cube size for each processor.

0
50

10
0

15
0

BT, Training with p=100,256,484

Number of Training Processors − Model

P
er

ce
nt

aq
e

E
rr

or

100 256 484
TOT TOT TOT

1
2

5
10

50
20

0

BT, Training with p=484

Processors (Log2 scale)

S
ec

on
ds

 (
Lo

g 2
 s

ca
le

)

1 4 16 64 256 1024 4096

Predicted Total
Measured
Perfect Speedup

Figure 3: Results for predicting BT on 1024 processors. The right-hand graph shows results forproblem_size = 500.

0
50

10
0

15
0

LU, Training with p=128,256,512

Number of Training Processors − Model

P
er

ce
nt

aq
e

E
rr

or

128 256 512
TOT TOT TOT

1
2

5
10

20
50

20
0

LU, Training with p=512

Processors (Log2 scale)

S
ec

on
ds

 (
Lo

g 2
 s

ca
le

)

1 4 16 64 256 1024 4096

Predicted Total
Measured
Perfect Speedup

Figure 4: Results for predicting LU on 1024 processors. The right-hand graph shows results for all input variables equalto 450.

0
50

10
0

15
0

EP, Training with p=128,256,512

Number of Training Processors − Model

P
er

ce
nt

aq
e

E
rr

or

128 256 512
TOT TOT TOT

1
2

5
10

20
50

20
0

EP, Training with p=512

Processors (Log2 scale)

S
ec

on
ds

 (
Lo

g 2
 s

ca
le

)

1 4 16 64 256 1024 4096

Predicted Total
Measured
Perfect Speedup

Figure 5: Results for predicting EP on 1024 processors. The right-hand graph shows results form = 234.

0
50

10
0

15
0

CG, Training with p=128,256,512

Number of Training Processors − Model

P
er

ce
nt

aq
e

E
rr

or

128

(MAX=368%)

256 512 128

(MAX=276%)

256 512
SEP SEP SEP TOT TOT TOT

Q/L/CP Q/Q/CP L/L/Max

0
50

10
0

15
0

CG, Training with p=256

Model

P
er

ce
nt

aq
e

E
rr

or

1
5

10
50

50
0

CG, Training with p=256

Processors (Log2 scale)

S
ec

on
ds

 (
Lo

g 2
 s

ca
le

)

1 4 16 64 256 1024 4096

Q/L/CP RMSE=.11/.15
Q/Q/CP RMSE=.11/.15
L/L/Max RMSE=.13/.16
Measured
Perfect Speedup

Figure 6: Results for predicting CG on 1024 processors. The right-hand graph shows results forNA = 2M and NONZER = 24.

0
50

10
0

15
0

SMG, Training with p=32,64,128

Number of Training Processors − Model

P
er

ce
nt

aq
e

E
rr

or

32 64 128 32 64 128
SEP SEP SEP TOT TOT TOT

Q/Q/Max Q/Q/CP L/L/CP

0
50

10
0

15
0

SMG, Training with p=128

Model

P
er

ce
nt

aq
e

E
rr

or

1
5

10
50

50
0

SMG, Training with p=128

Processors (Log2 scale)

S
ec

on
ds

 (
Lo

g 2
 s

ca
le

)

1 4 16 64 256 1024

Q/Q/Max RMSE=.03/.07
Q/Q/CP RMSE=.03/.11
L/L/CP RMSE=.04/.18
Measured
Perfect Speedup

Figure 7: Results for predicting SMG on 256 processors. The right-hand graph shows results forDIM1 = 300.

0
50

10
0

15
0

SP, Training with p=100,256,484

Number of Training Processors − Model

P
er

ce
nt

aq
e

E
rr

or

100 256 484 100 256 484
SEP SEP SEP TOT TOT TOT

L/Q/Max Q/Q/Max Q/Q/CP

0
50

10
0

15
0

SP, Training with p=484

Model

P
er

ce
nt

aq
e

E
rr

or

1
2

5
10

20
50

20
0

SP, Training with p=484

Processors (Log2 scale)

S
ec

on
ds

 (
Lo

g 2
 s

ca
le

)

1 4 16 64 256 1024 4096

L/Q/Max RMSE=.18/.18
L/L/Max RMSE=.18/.18
Q/L/CP RMSE=.16/.26
Measured
Perfect Speedup

Figure 8: Results for predicting SP on 1024 processors. The right-hand graph shows results forproblem_size = 450.

0
50

10
0

15
0

SWEEP3D, Training with p=128,256,512

Number of Training Processors − Model

P
er

ce
nt

aq
e

E
rr

or

128 256 512 128 256 512
SEP SEP SEP TOT TOT TOT

Q/Q/Max Q/L/Max L/L/CP

0
50

10
0

15
0

SWEEP3D, Training with p=512

Model

P
er

ce
nt

aq
e

E
rr

or

1
2

5
10

20
50

20
0

50
0

SWEEP3D, Training with p=512

Processors (Log2 scale)

S
ec

on
ds

 (
Lo

g 2
 s

ca
le

)

1 4 16 64 256 1024 4096

Q/Q/Max RMSE=.07/.09
Q/L/Max RMSE=.07/.11
L/L/CP RMSE=.18/.26
Measured
Perfect Speedup

Figure 9: Results for predicting Sweep3d on 1024 processors. The right-hand graph shows results forITG = 400, JTG = 400, and
KTG = 400.

We converted SMG to strong scaling by reducing the cube’s volume
by half when we doubled the processor count. We could only test
up to 256 processors since using more than one processor per node
causes SMG to run out of memory quickly on smaller processor
configurations.

Figure 7 (previous page) shows the results for SMG. The left-
hand graph shows that separating computation and communication
makes a more significant difference than with CG (see also thedis-
cussion below). Unlike CG, increasing the number of processors
used for training always helps because SMG does not have as pro-
nounced differences in memory behavior. The middle graph shows
that a quadratic regression for both computation and communica-
tion performs best.

SP overview.Figure 8 (previous page) shows the results for SP.
The results are quite good; prediction error is always within 13%
and as close as 8%. The primary difference between SP and the
other communication intensive applications is that separating com-
putation and communication improves predictions only slightly.
The one unusual aspect of our SP predictions is exactly the same as
that of CG: predictions using smaller numbers of processors(100)
is better than larger numbers (484). As with CG, our inspection
of hardware performance counters show that this is due to memory
hierarchy issues.

Sweep3d overview.Sweep3d is an application with which we
intentionally stressed our prediction system, by choosinga P × 1
processor grid—which is not typical for this application. This
caused any processor rank larger than the x-dimension (ITG) of
the data grid to be assigned no work and therefore simply remain
idle. Figure 9 (previous page) shows that while prediction quality is
not as good for Sweep3d as for the other applications, it is reason-
able. The best median error is 17%, but the significant algorithmic
change (which is Sweep3d-specific) limits the ability of RMSE to
select this regression. Sweep3d demonstrates the challenges facing
any black box system. Clearly, a regression-based approachwill
not generate high quality predictions in the (fairly unusual) case
when program behavior isvastlydifferent when increasing the pro-
cessor configuration. With a program like Sweep3d—with aP × 1
processor grid—modest programmer input is needed for better pre-
dictions. We can probably limit this input to just the knowledge of
when the granularity of work is too small to keep processors busy.

Discussion.Generally speaking, training with as many proces-
sors as possible will produce a better fit. However, the case of CG
shows this does not always hold. Our system can detect when mem-
ory behavior is causing super-linear speedup, because the training
runs can collect the relevant performance counters. However, the
ramification might be more training runs since machines often have
a relatively small number of performance counters and we arein-
terested in not just L1 and L2 cache misses, but, for example,also
local and remote references to memory caused by a NUMA archi-
tecture.

More importantly, we can choose the best fit within a processor
configuration based on RMSE even though we cannot easily use
it to compare across different processor configurations. Through
SP and SMG, we see two different extremes of the disparity in fit
quality. For SP, using RMSE determined that we should use the
critical path technique to separate computation and communication
times. However, the RMSE difference, and the difference in fit
quality, are small, as Figure 8 shows.

For SMG, the difference in fit quality is quite significant. The
middle graph in Figure 7 shows that the difference between lin-

ear and quadratic for predicting 256 processors is much morepro-
nounced than with CG. The RMSE is often over twice as high for
a linear fit as a quadratic fit. The right-hand graph clearly shows
that the quadratic fit predicts the observed times much better (7%
median error using 128 processors to predict 256) than the linear
fits. The worst fit has a median error over 30% and worst case error
of over 60%. Thus, even if using RMSE to select the regression
method might provide only a small improvement, as with CG, se-
lecting the regression method based on RMSE avoids cases with
very large error.

Finally, training with up to 128 processors clearly produces poor
results for CG. First, this is the one case where separating com-
putation and communication actually hurt prediction accuracy (on
128 processors). As we have said, memory hierarchy effects are
the problem. More generally, however, we need a method to deter-
mine the processor count required to produce good resultsa priori.
We suggest predictingwithin the training runs. For example, in the
case of CG, we train with up to 16 processors, and investigatehow
that predicts 128 processors. The results show significant error,
an indication that training with up to 128 processors will produce
poor results when predicting 1024 processors. As a comparison, we
used the same method for LU, and predictions within the training
set were quite good—and when 128 processors were used, 1024
processor predictions were accurate. However, we need moreev-
idence to verify that this approach works consistently, which we
leave to future work.

5. RELATED WORK
We extend on a significant body of prior work. Many re-

searchers have explored predicting performance of parallel appli-
cations. Most prior work either predicts for processor counts ex-
plored on other systems or uses extensive manual analysis toderive
analytic models.

The work most closely related to ours uses various regression ap-
proaches to predict application performance across a rangeof input
parameter values. For example, neural networks model the param-
eter space to predict execution time, generally with errorsof 10%
or less [15]. Direct comparisons demonstrated that piecewise poly-
nomial regression provides similar accuracy [18]. Unlike these pre-
vious regression-based approaches, we identify techniques to sepa-
rate computation and communication that support extrapolations to
larger processor counts.

Many other black-box modeling approaches exist. Lyonet al.
reason about execution behavior using Taylor expansions todeter-
mine scalability properties [19]. This more theoretical approach
is complementary to our empirical approach and could conceptu-
ally be used in tandem with it. Another black box technique [34]
predicts performance across platforms through partial execution of
iterative programs but is restricted to the system sizes used for the
partial executions. A final approach is to use a combination of static
and dynamic analysis to predict performance on different architec-
tures for different inputs [20] (and in later work, the approach is
extended to find performance bottlenecks [21]). This approach has
the advantage of avoiding runs on different hardware architectures,
but requires compiler infrastructure that can be difficult to integrate
into existing application build environments. Our framework only
requires only relinking of the application with the PMPI library.

MetaSim provides a general performance modeling frame-
work [29]. MetaSim uses Atom [30] or other instrumentation
mechanisms like Dyninst [8] to gather memory traces, which then
support simulation of memory performance on a variety of archi-
tectures. MetaSim extends those results to a distributed memory
setting with Dimemas [17], which consumes an MPI trace to sim-

ulate network performance. The memory and MPI traces are tied
to the original processor count and, thus, unlike our approach, this
work does not support scaling predictions.

Kerbyson et al. derive an analytical performance model for the
ASCI Sage application [16]. This white-box approach requires de-
tailed analysis of data structures and program constructs,such as
loop nests. They combine this analysis with microbenchmarks that
measure basic machine characteristics such as network, memory
and computation capability. This powerful approach does support
scaling predictions. However, it requires significant performance
analysis effort that would be difficult, if not impossible, to auto-
mate. Our approach is mostly automated and requires little analytic
effort. Brehmet al. make predictions using regression, including
ones that separate computation and communication [6]. Their ap-
proach requires creating computation and communication models
for the program that is being modeled. Several other researchers
have explored similar white-box scalability analysis approaches,
both from an algorithmic and an architectural perspective [13, 33,
23, 9, 28, 32]. In general, they derive application or architecture
specific models through detailed analysis, which requires signif-
icant effort that is not readily automated. Other white-boxap-
proaches, such asmodeling assertions[1], require code modifica-
tions in order to predict workload and memory requirements.Our
techniques at most use the MPI profiling interface for instrumenta-
tion, which only requires relinking the application.

Many have investigated analytic modeling of parallel machines.
The best known examples are LogP [10] and BSP [31]. The for-
mer uses latency, overhead, gap, and number of processors tode-
termine an effective parallel algorithm while the latter usessuper-
stepsto indicate computational phases, which are terminated by
communication points. Both of these techniques require significant
programmer intervention. For example, with LogP, while thepro-
grammer can model a computational step as taking constant time, it
is still necessary to model the communication that exists precisely.
As the number of processors increases, this becomes increasingly
challenging. Another approach requires no user intervention to cre-
ate a static cost model [4]. However, it has so far only been used
effectively for simple programs and on simple architectures.

Several tools trace or analyze MPI performance through the
MPI profiling interface, including VampirTrace [22], svPablo [11],
TAU/ParaProf [5], and Paraver [25], just to name a few. Most of
these tools focus on providing assistance in optimizing applica-
tions, particularly for very large processor counts [26]. Previous
work focusing on optimization has investigated techniquesto cap-
ture the critical path in MPI programs [14, 27]; we build on the
algorithm developed by Schulz [27] in our work.

6. SUMMARY AND FUTURE WORK
This paper has contributed a new black-box technique to predict

parallel program scaling behavior. The basic idea is to use mul-
tivariate regression to predict the performance on large processor
configurations using training data obtained from smaller numbers
of processors.

Our results are encouraging. The error of our predictions for
programs up to 1024 processors was in most cases 13% or less.
We showed that we can formulate several different predictions
based on the training data and that the one with the lowest root-
mean-squared-error generally provides the best prediction. We also
showed that understanding memory behavior—specifically the ca-
pacity of different memory hierarchy levels—is critical tomaking
good predictions.

Future Work.This work represents the beginning of our effort to
achieve accurate predictions of parallel programs, and much future
work remains to be done. Our next task is to experiment with larger
processor configurations; while the number of processors used in
training will also be larger, it remains to be seen what happens to
prediction accuracy. Second, we need to investigate more applica-
tions, including ones that exhibit load imbalance. Third, we will
investigate further ways to determine the smallest number of pro-
cessors for training that will produce quality predictions. Fourth,
we are investigating a novel clustering scheme to predict more ac-
curately the effect of the memory hierarchy on computation time.
Finally, we will further refine communication predictions by sepa-
rately modeling calls that scale differently.

7. REFERENCES

[1] S. R. Alam and J. S. Vetter. Hierarchical model validation of
symbolic performance models of scientific applications. In
Euro-Par, Aug. 2006.

[2] S. R. Alam, J. S. Vetter, P. K. Agarwal, and A. Geist.
Performance characterization of molecular dynamics
techniques for biomolecular simulations. InPPOPP, pages
59–68, Mar 2006.

[3] D. Bailey, J. Barton, T. Lasinski, and H. Simon. The NAS
parallel benchmarks. RNR-91-002, NASA Ames Research
Center, Aug. 1991.

[4] V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. An
static performance estimator to guide data partitioning
decisions. InProceedings of the Third ACM SIGPLAN
Symposium on Principles and Practices of Parallel
Programming, pages 213–223, Apr. 1991.

[5] R. Bell, A. Malony, and S. Shende. ParaProf: A Portable,
Extensible, and Scalable Tool for Parallel Performance
Profile Analysis. InProceedings of the International
Conference on Parallel and Distributed Computing
(Euro-Par 2003), pages 17–26, Aug. 2003.

[6] J. Brehm, P. H. Worley, and M. Madhukar. Performance
modeling for SPMD message-passing programs.
Concurrency: Practice and Experience, 10(5):333–357, Apr.
1998.

[7] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci.
A scalable cross-platform infrastructure for application
performance tuning using hardware counters. In
Supercomputing, Nov. 2000.

[8] B. Buck and J. K. Hollingsworth. An API for runtime code
patching.The International Journal of High Performance
Computing Applications, 14(4):317–329, Winter 2000.

[9] G. Carey, J. Schmidt, V. Singh, and D. Yelton. A scalable,
object-oriented finite element solver for partial differential
equations on multicomputers. InInternational Conference on
Supercomputing, pages 387–396, 1992.

[10] D. Culler, R. Karp, D. Patterson, A. Sahay, E. Santos,
K. Schauser, R. Subramonian, and T. von Eicken. LogP: A
practical model of parallel computation.Communications of
the ACM, 39(11):78–85, Nov. 1996.

[11] L. DeRose and D. A. Reed. SvPablo: A multi-language
architecture-independent performance analysis system. In
Proceedings of the International Conference on Parallel
Processing (ICPP’99), Sept. 1999.

[12] T. R. P. for Statistical Computing. http://www.r-project.org/.
[13] J. L. Gustafson. Reevaluating Amdahl’s law.

Communications of the ACM, 31(5):532–533, May 1988.

[14] J. K. Hollingsworth. Critical path profiling of message
passing and shared-memory programs.IEEE Transactions
on Parallel and Distributed Systems, 9(10):29–40, 1998.

[15] E. Ipek, B. R. de Supinski, M. Schulz, and S. A. McKee. An
approach to performance prediction for parallel applications.
In Euro-Par, pages 196–205, Aug 2005.

[16] D. Kerbyson, H. Alme, A. Hoisie, F. Petrini, H. Wasserman,
and M. Gittings. Predictive performance and scalability
modeling of a large-scale application. InSupercomputing,
Nov. 2001.

[17] J. Labarta, S. Girona, V. Pillet, and T. Cortes. DiP: A parallel
program development environment.Lecture Notes in
Computer Science, 1124:665–??, 1996.

[18] B. C. Lee, D. M. Brooks, B. R. de Supinski, M. Schulz,
K. Singh, and S. A. McKee. Methods of inference and
learning for performance modeling of parallel applications.
In PPOPP, pages 249–258, 2007.

[19] G. Lyon, R. Kacker, and A. Linz. A scalability test for
parallel code.Software — Practice and Experience,
25(12):1299–1314, Dec. 1995.

[20] G. Marin and J. Mellor-Crummey. Cross-architecture
performance predictions for scientific applications using
parameterized models. InSIGMETRICS 2004, pages 2–13,
June 2004.

[21] G. Marin and J. Mellor-Crummey. Application insight
through performance modeling. InIEEE International
Performance Computing and Communications Conference,
Apr 2007.

[22] M. Müller, H. Brunst, M. Jurenz, A. Knüpfer, M. Lieber,
H. Mix, and W. Nagel. Developing Scalable Applications
with Vampir, VampirServer and VampirTrace. In
Proceedings of the Minisymposium on Scalability and
Usability of HPC Programming Tools at PARCO 2007, to
appear, Sept. 2007.

[23] D. Nussbaum and A. Agarwal. Scalability of parallel
machines.Communications of the ACM, 34(3):56–61, Mar.
1991.

[24] F. Petrini, D. J. Kerbyson, and S. Pakin. The case of the
missing supercomputer performance: Achieving optimal
performance on the 8,192 processors of ASCI Q. In
Supercomputing, 2003.

[25] V. Pillet, J. Labarta, T. Cortes, and S. Girona. PARAVER: A
tool to visualise and analyze parallel code. InProceedings of
WoTUG-18: Transputer and Occam Developments,
volume 44 ofTransputer and Occam Engineering, pages
17–31, Apr. 1995.

[26] P. C. Roth and B. P. Miller. On-line automated performance
diagnosis on thousands of processes. InPPOPP, pages
69–80, Mar 2006.

[27] M. Schulz. Extracting critical path graphs from MPI
applications. InIEEE Cluster, Sep 2005.

[28] J. P. Singh, J. L. Hennessy, and A. Gupta. Scaling parallel
programs for multiprocessors: Methodology and examples.
IEEE Computer, 26(7):42–50, July 1993.

[29] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia,
and A. Purkayastha. A framework for performance modeling
and prediction. InSupercomputing, Nov. 2002.

[30] A. Srivastava and A. Eustace. ATOM: A system for building
customized program analysis tools. InACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 196–205, June 1994.

[31] L. Valiant. A bridging model for parallel computation.
Communications of the ACM, 33(8):103–111, Aug. 1990.

[32] F. C. Wong, R. P. Martin, R. H. Arpaci-Dusseau, and D. E.
Culler. Architectural requirements and scalability of theNAS
Parallel Benchmarks. InSupercomputing, 1999.

[33] P. H. Worley. The effect of time constraints on scaled
speedup.SIAM J. Sci. Stat. Computing, 11(5):838–858, Sept.
1990.

[34] L. T. Yang, X. Ma, and F. Mueller. Cross-platform
performance prediction of parallel applications using partial
execution. InSupercomputing, 2005.

