The Revenge of the Overlay:
Automatic Compaction of OS Kernel Code via On-Demand
Code Loading-

Haifeng He, Saumya Debray, Gregory Andrews
Department of Computer Science
The University of Arizona
Tucson, AZ 85721, USA
{hehf, debray, greg}@cs.arizona.edu

ABSTRACT

There is increasing interest in using general-purposeatipgrsys-
tems, such as Linux, on embedded platforms. Itis espedmfpr-

tant in embedded systems to use memory efficiently because em

bedded processors often have limited physical memory. Fdper
describes an automatic technique for reducing the memay fo
print of general-purpose operating systems on embedd&dnpies
by keeping infrequently executed code on secondary staxage
loading such code only if it is needed at run time. Our techaiig

based on an old idea—memory overlays—and it does not require

hardware or operating system support for virtual memory.raé: p
totype of the technique has been implemented for the Linuxdte

not needed in every application context, and which incureges-
sary overheads, e.qg., in execution speed or memory fobti@irch
overheads are especially undesirable in embedded prosessd
applications because they usually have resource cortstraunch
as a limited amount of memory. This makes it important to gt a
reduce the memory footprint of embedded code—includinghe
erating system—as much as possible.

This paper focuses on automatic techniques for reducingéme-
ory footprint of operating system kernels in embedded syste
Prior work in this area has generally focused on in-memotf-te
niques: eliminating unnecessary or duplicate code [3, 8]cm-
pressing infrequently executed code for on-demand decesajam

We evaluate our approach with two benchmark suites: MiBench [2] (Section 5 gives a more complete discussion of relatedkwo

and MediaBench, and a Web server application. The expefimen
tal results show that our approach reduces memory requirtsme
for the Linux kernel code by about 53% with little degradatia
performance.

Categories and Subject Descriptors:D.3.4 [Programming Lan-
guage]: Processors—code generation, compilers, optimiz#®.4.2
[Operating Systems]: Storage Management—secondangststor-
age hierarchies

General Terms: Algorithms, Design, Experimentation, Perfor-
mance.

Keywords: Code compaction, Code clustering, Binary rewriting,
Embedded systems.

1. INTRODUCTION

Technological trends in recent years have led to the growseg
of general-purpose operating systems, such as Linux, ireddsgal
contexts. While this is in many ways a simpler and more ecénom
cal approach to managing operating systems for embeddézkdev
it has the disadvantage that such operating systems—elgebis-
cause they are general-purpose—contain features and uaicz ¢

*This work was supported in part by NSF Grants CNS-0410918
and CNS-0615347.

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguiees prior specific
permission and/or a fee.

EMSOFT 07 September 30—October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-825-1/07/0009 ...$5.00.

These approaches are able to accomplish significant codeesiz
ductions: unnecessary code elimination achieves sizetieds of
18%—-24% [3, 8], while augmenting this with compression an
ecuted code gives an additional 7%—12% reduction in overeaih-
ory footprint [2]. However, these approaches have the &tiah
that all of the entire kernel code, whether or not it is corspesl, is
kept in memory, which can unnecessarily limit the amountaafec
size reduction achievable.

Keeping all of the kernel code in memory might be reasondble i
most or all of the code was actually executed. It turns outdver,
that (at least for embedded applications) most of the kerogé is
executed infrequently, if at all. When running the MiBenchbed-
ded application suite [7] on a minimally configured Linux tkef,
for example, we found that out of a total of 213,862 instiortsi
(occupying a total of 633.7 KB of memory), only 71,298 instru
tions (occupying 202.8 KB of memory)—i.e., about 32%—were
actually executed. However, although about 68% of the keote
is not executed, existing code optimization techniquesaate to
prove only about 20% of the code to be unreachable; the rémgain
code cannot be discarded because in theory it could be exkcut
depending on other inputs to the applications running. Hewe
keeping this code in memory uses up a scarce resource.

While embedded systems typically have a limited amount of
main memory, they often have a considerably greater amdunt o
secondary storage available, e.g., in the form of flash mgnidiis
paper describes an automated approach that takes advahthge
feature to reduce the main memory requirements of the OSkern
The essential idea behind our approach is to keep rarelyacsl
on secondary storage, and load it into main memory if and vithen
is needed. We apply clustering to the whole-program coffiwal
graph of the kernel to group “related” code fragments togetthis
has the effect of dividing up the OS kernel code into parigio
and allows us to reuse the main memory buffer, into which code
is loaded on demand, for different partitions at differemtets. If

necessary, a very minor modification of the kernel code ®sfto
deal with multi-threading issues. The result is reminisagrthe
old idea of code overlays, except that in our case the entoe p
cess of clustering the code into partitions, and transfognii to

3. CODE COMPACTION

As mentioned earlier, the main idea behind our approach is to
keep the commonly executed OS kernel code (the “hot” code) in
main memory while moving the rarely executed code (the “told

manage the code overlays, is automatic. Our approach ddes nocode) to secondary storage, and with appropriate adjussmen

require hardware or operating system support for virtuainiory.
Therefore, it is also applicable to low-end embedded systéhn

out virtual memory or MMU hardware support. Experimentshwit
the Linux kernel indicate that we are able to reduce the mamm
ory code size requirements of the OS kernel by around 53% with
very little degradation in performance.

2. BACKGROUND

OS kernel code is quite different from ordinary applicatioale.
A significant problem is the presence of considerable ansoaht
hand-written assembly code that often does not follow tieilfa
iar conventions of compiler-generated code, e.g., witlamgo
function prologues, epilogues, and argument passing. Mhales
it difficult to use standard compiler-based techniques foole-
system analysis and optimization of kernel code. To dedi thiis
problem, we decided to use binary rewriting for kernel coatioa.
However, while processing a kernel at the binary level gtesia
uniform way to handle code heterogeneity arising from thea-co

load cold code into memory when (if) it is needed. The codestra
formation needed to accomplish this basic functionalityascep-
tually straightforward: on each control flow edge that goemfthe

hot code to the cold code, insert some code to load the cold cod
from secondary storage into memory; and adjust addresses to
flect the fact that the cold code may execute at a differerstion

in memory than its original address when it is loaded. Nog th
while code for on-demand loading is inserted along contia fl
edges from the hot code in memory to the cold code in secondary
storage, no corresponding code is needed on edges fromIthe co
code to the memory-resident code. This is because the memory
resident code always stays in memory, while the code loaaea f
secondary storage is not modified and so does not need to be wri
ten back to secondary storage.

This straightforward idea is much too simplistic, howevére
have to reserve enough space in memory to accommodate aamy cod
that may have to be loaded; we call this region of memoryctide
buffer. If all we do is that described above, then the code buffer has

bination of source code, assembly code and legacy code such ato be large enough to accommodate all of the cold code, iegult

device drivers, it introduces its own set of problems. Sitiee
topic of binary rewriting of operating system kernels is sovhat
orthogonal to the topic of this paper, we only briefly summathe
issues that arise; this topic is discussed in more detalwisre
[13].

The main differences between operating system kernels and o
dinary applications fall under the following categories:

Data in text section. The Linux kernel contains a significant amount
of data embedded within the text section. For example, in
Linux version 2.4, the page tables are placed within the text
section. Such embedding of data within the instructiorestre
complicates the disassembly process.

Hand-written assembly code. Unlike application programs, which
are typically written in high-level languages such as C or
C++, operating system kernels typically contain a significa
amount of hand-written assembly code. This complicates the
problem of program analysis.

Use of indirection. Operating system kernels often use indirect con-

trol transfers through function pointers to enhance exténs
ity and maintainability. This makes precise program anslys
difficult.

Implicit Entry Points. Inan ordinary application program, the en-
try point is well-defined. This simplifies the task of disas-

in no net space savings (it would actually make things & Mtbrse
because of the additional code needed for on-demand loadiing
code from secondary storage).

It is evident from this discussion that we have to do threegsi
in order to make our approach profitable. First, we have tereet
mine how much code is to be memory-resident and how much is to
be kept in secondary storage: increasing the amount of cogledn
to secondary storage leads to a reduction in the memoryriobtd
the kernel, but can potentially lead to runtime overheadeiased
because of the need to load code into memory during execution
Second, we have to load the cold code in smaller chunks so as to
reduce the time and energy cost of loading code. Finallyytbm-
ory region where these code chunks are loaded has to be reéesed
the code buffer needs to be able to hold different chunks dé et
different times. If the code loaded from secondary storageai-
titioned intok chunks, of sizes, ..., ng, then this code buffer
reuse makes it possible to use a buffer of sizez?_,n; instead
of 3-F | n; as in the case with no reuse. However, these require-
ments raise some technical issues, which we discuss inrfeme
der of this section. We deal with first issue via a user-speai
threshold that controls the amount of code that is memasideat;
this issue is discussed in Section 3.1. The second requiteme
plies that we have to be able to divide the cold code into wiffe
chunks in some reasonable way, so as to minimize the total num
ber of loads from secondary storage; we discuss this in@e8stR.

sembly and program analysis. By contrast, operating system The third requirement introduces some complications inéottan-

kernels have multiple implicit entry points in the form oksy
tem calls and interrupt handlers.

Implicit Control Flow. Operating systems contain implicit con-
trol flow paths, e.qg., for exception handling, that are natire
ily evident from examining the code. This complicates the
task of program analysis and transformation.

For the reasons given above, binary rewriting techniqupicgble
to application code do not always carry over directly to k¢oode.
They also mean that code optimization techniques develfgred
application code (e.g., some of the work on dynamic codeifgad
from secondary storage discussed in Section 5) may not betlyir
applicable to OS kernel code.

dling of control transfer between two different dynamigdtiaded
code chunks; this issue is discussed in Section 3.3.

3.1 Upper-Bound of Memory Requirement for
Kernel Code

The amount of memory required for kernel code is determined
by two factors: the size of the code that is always kept in nrgmo
and the size of code buffer, i.e., the memory region that ésl us
keep the code that is loaded dynamically. The sum of these two
values gives an upper bound on the memory usage for the kernel
code.

In our approach, the code that is always kept in memory(mgmor
resident) consists of two categories:

Input: A basic blockbbl

Output: The estimated final size &bl
Method:

N = the total memory size of original instructions
in bbl.
if bbl contains a control flow edge to a different cluster
an indirect edge (means control target is unknodm)
return N + size increased due to code transformation.
(see Section 3.3).
else
return N.
fi

Figure 1: The BlockSize function

Thecore code, which is the code that has to be in memory
to make the kernel work correctly. This includes the sched-
uler, the memory management, the trap and interrupt han-
dling code in the kernel, and—in the final overlay-based ver-
sion of our system—the code that manages overlay. Our cur-
rent implementation identifies such code by having the user
designate a specific set of kernel functions as core code.

The “hot” code, i.e., frequently executed code that is kept
in memory in addition to the core code for performance rea-
sons. Our approach uses a user-specified parameteat
determines how much code is kept in the memory. In our
current implementationy is specified as the percentage in-
crease allowable in the size of the core code relative to its
size in the input binary. Thus, if core code occupies 100 KB
in the input kernel binary ang = 10% 0.1, then the
memory-resident code in the transformed kernel is allowed
to be up to 10% larger than the core code in the input binary,
i.e., up to 110KB.

We assume that the size of code buffer is given as an inputrpara
eter (the experimental results reported in this paper wased on

the size of code buffe= 2 KB). The size of code buffer, denoted
as BufSz, limits how large each code chunk(cluster) can be in or-
der to be accommodated in the code buffer. With parametard
BufSz, the upper-bound of memory usage for kernel code equals
to

size(core code) X (14) + BufSz.
3.2 Code Clustering

In order to minimize the number of reads for code from sec-
ondary storage, we use a greedy node-coalescing algorithm f
clustering. We begin with an edge-weighted whole-program-c
trol flow graph for the kernel. The edge weights, represgntix-
ecution frequency counts, are obtained via edge profilingces
there is a significant amount of indirect control transfén®tigh
function pointers in the kernel, we also perform target firafifor
all indirect control transfer instructions to collect theights for
indirect edges and add them into the whole-program contwal fl
graph.

From the edge-weighted whole-program control flow graph, we
construct an edge-weighted graph, thester graph, whose nodes
represent the code clusters and whose edges represeiol t@mis-
fers between clusters.

The details of our clustering algorithm are shown in Figure 2
The algorithm operates on chains of basic blocks that musbhe
tiguous in memory, e.g., due to fall-through edges or tharnet
from a function call. There are four major steps in the akiont

1. Createacluster graph

Initially, each chain is assigned to a separate clustergthe
is an edgec between two clusters andb if there are any
control flow edge between and b, and the weight of the
edgee is computed as the total weight of all the control flow
edges between the blocksdrandb.

. Compute the code size and cluster size for each node

The cluster size of each node determines how much code a
cluster can hold. For each node other than the rioder the

core code, the cluster size is given By,fSz, the size of the
code buffer. The cluster size @f is the final size of code
that is always in memory. The upper-bound is determined by
the size ofcore code and the code-size bound specified by
the parametey.

The code size for a cluster is computed as the total size of all
of the basic blocks in that cluster. The functi®ockSize,
shown in Figure 1, is used to compute the memory size of a
basic block. This is given by the total size of the instrugsio

in the basic block together with the size of any additional
code that is inserted to support overlays. The reason for the
latter code is that if there is an inter-cluster control sfan

in a basic block, the control transfer instructions in theiba
block have to be modified to deal with overlays (see Section
3.3).

. Node coalescing

The algorithm then processes the cluster edges in descend-
ing order of weight, iteratively coalescing the end-poiotts
edges whenever possible until no further coalescing can be
carried out. Two nodes andb can be coalesced if doing so
will not cause the size of the resulting (coalesced) node to
violate the following conditions:

— If neithera nor b is the core nod€”, then the size of
resulting node must not exceed the cluster size of either
node, which is equal tBufSz.

— If either of a, b is C, the size of resulting node should
not exceednax(C'.cluster_size, BufSz). In this case,
the code of the other node becomes “hot” code and
memory-resident as well.

4. Defragmentation

At the end of this step, there are usually some small clusters
left over; a defragmenting step is carried out at the end to
merge such clusters with larger ones where possible.

In the algorithm, the bound parametercontrols the final size
of memory-resident code. § = 0, only the core code will be
kept in memory; all other code, including even hot code, vl
kept in secondary storage, likely resulting in a large numntdife
reads into the code buffer and a concomitant high runtime-ove
head. Larger values of mean that some additional code can be
kept memory-resident; since we process cluster edges aedes
ing order of weight, this will cause some of the frequentlg@xed
code (which must be small enough to fit into the additional mem
ory space that is now available) to be coalesced with theerlus
corresponding to the core code. This will result in reducedime
overheads because less code will have to be loaded at rurtiinre
experimental results, reported in Section 4, confirm this.

Input:
1. An edge-weighted control flow graph for a program, togetti¢h a functionBlockSze that gives an estimate of total memory
size of each basic block
2. A set of functionsF that must reside in memory. The code for these functions cisespthecore code.
3. A boundy on the final size of the memory-resident code.
4. AnintegerBufSz > 0 giving the size of code buffer.

Output: A cluster graph for the program.
Method:

1. Create a cluster graght = (V, E) as follows:

— V contains a single nod€ corresponding to theore code, as well as a node for each basic block ch&isuch thatB # C.

— There is an edgéu, b) between nodea andb in the cluster graph if there is a control transfer edge betwsome basic
block ina and some basic block in The weightw(e) of an edge: = (a, b) is given by the total edge weight of all control
flow edges between blocks inand those irb.

2. Compute the code size and cluster size for each node:
— For each node in the cluster graph, let.code_size = > { BlockSize(bbl) | bbl € a}.
— Let C.cluster_size = C.code_size x (1 + 7).
— For each node # C, let a.cluster_size = BufSz.
3. [Node coalescingjProcess the edges of the cluster grapm descending order of weight, iteratively coalescing rsode

while 3(a,b) € E s.t. (a.code_size + b.code_size) < max(a.cluster_size, b.cluster_size) do
Coalesce the endpoints b and merge with «a, setting:
a.code_size = a.code_size + b.code_size;
a.cluster_size = max(a.cluster_size, b.cluster_size).
Update edge weights for all clusters adjacent,tb appropriately.
od

4. [Defragmentatiof.Coalesce small clusters into larger ones where possible:

while Ja,b € V s.t. (a.code_size 4+ b.code_size) < max(a.cluster_size, b.cluster_size) do
Mergeb with a, setting:
a.code_size = a.code_size + b.code_size;
a.cluster_size = max(a.cluster_size, b.cluster_size).

od

5. Return the resulting cluster graph.

Figure 2: The Clustering Algorithm

3.3 Code Transformation — Two control transfer routines; _dynamic_call and

Once clustering has been done, the next step is to transf@m t _dynamic_jmp. The first of these, dynamic_call, han-
kernel code to support overlays. We add a small amount of code dles the case where control transfer into the target cluster
into the core cluster (i.e., the cluster that contains the code) is a function call, while the second routinedynamic_jmp,
for managing code loading at runtime. We call this codevaslay handles the case where the control Fransfer is a jump instruc
manager. The overlay manager consists of: tion. Conceptually, these two routines are very similar in

their essential functionality: they invoke the dynamicdea

to load the target cluster into memory, translate the tadet
dress into the appropriate offset within the code buffeanth
branch to that location. The only difference between them
is that when the control transfer is a function call, the metu
from that call continues execution at the instruction atfter
call instruction, and some extra book-keeping is necegsary
handle this, as described below.

"The C'h’Stler 3‘1‘3;3?3 table .Storesd the s'gartlilngl adéjrgssiggdgac The inter-cluster control flow edges where the target citiste
namically loaded clusters(since dynamically loaded eksstare not (or, in the case of indirect control transfer, may not the)

laced in contiguous address space, it is enough to keeptloal
Etarting addres% of each dynamﬁcally loaded cl%ster inatF))tlE). Y core cluster need to be changed so that the overlay manager ca

The table is loaded into the memory at the very beginning when take over the control of the execution. The transformatsoraiher
kernel starts. straightforward. We transform the code to push the targetess

— A dynamic loader, which is passed an address that is the tar-
get of a control transfer instruction into the code that seed
to be loaded into the memory. The dynamic loader looks up
this address in the cluster address tahbeidentify the clus-
ter that it belongs to, then loads the code for that clustenfr
secondary storage into the code buffer.

code buffer : contents= cluster A

offset

cluster B
call f

return address = clustér instr. following call instructio
= instr. at offsetm in code buffer

(a) at the point of a call tb

code buffer : contents = cluster B

offset

return

\/

return address: instr. at offsetm in code buffer
= some instruction in cluste®

(b) at the point of return from

Figure 3: The problem with function calls across dynamicaly loaded clusters

of inter-cluster control flow edges on the stack and thendirdaa
the appropriate control transfer routines:

— A direct unconditional jumpjmp ¢’ is transformed to code
that simply pushes the target address and jumps to
_dynamic_jmp:

push ¢
jmp _dynamic_jmp()

— The code for an indirect jumgmp *r’ is similar as a direct
jump:

push *r
jmp _dynamic_jmp()

— A conditional jump instructionJ.. ¢ is transformed to code
of the form

Jee A

A: push /¢
jmp _dynamic_jmp()

The transformation for function calls is analogous to thmemtven
above for unconditional jumps and indirect jump, except tha
branches to dynamic_call. Since the transformation makes
changes to the stack, the control transfer routines neeléan cip
the stack before it branches to the code buffer.

The control transfer routinegdynamic_call and_dynamic_jmp
are very similar except that there is one important diffeeche-
tween these routines that arises from a subtlety in dealiitly w
function calls from one dynamically loaded cluster into tueo.
This is illustrated in Figure 3. Suppose we have a functidh ca
from a dynamically loaded clustet to a functionf in a differ-
ent dynamically loaded clustd®. Figure 3(a) shows the machine
state at the point of the call: the code buffer contains elust,
and the return address, at some offsein the code buffer, is the
instruction following the call instruction. Since clustBris also
dynamically loaded, this call causes the code fto be loaded
into the code buffer, thereby overwriting the code fbithat had
been there. When control returns from the functjgrtherefore,

the return address—which is simply the address of offsén the
code buffer—actually points to an instruction in clustemrather
than one in cluster.?

We deal with this problem as follows. The control transfar-ro
tine _dynamic_call checks to see whether the return address is
within the code buffer. If it is, it creates a restore stubtime dy-
namically for the return address. The purpose of the restiofe
routine is to reload the clustet from which the call originated,
then jump to the appropriate offset within the code buffdre Te-
turn address passed to the callee is modified to point to iere
stub. The restore stub simply invokes the dynamic loaddr thi¢
appropriate address to cause the cluster for the origoatifi to
be loaded then cleans up the stack and branches to the location
within the code buffer corresponding to the instructiondwaing
the original call instruction.

The mechanism is able to handle chains of calls among differe
clusters properly as well. For example, suppose that tisesiecall
chains,a — b — ¢ — d, wherea, b, ¢, andd are functions
belonging to different clusters. There are 3 differentaesstubs
created for this call chain—one for each call-site. Whennation,
sayd, returns, the program control first jumps to the correspupdi
restore stub for calt — d and the restore stub calls dynamic loader
to load the cluster of which belongs to into the code buffer. Then
the program counter is set at the appropriate location irctite
buffer so that the execution can be continued in functioriThe
other two restore stubs act in a similar way when the funatiand
b returns.

The size of arestore stub is very small and consumes littteiam
of memory. For efficient purpose, a multiple instances ofares
stubs are created initially and during runtime, the numbere
store stubs will be increased if necessary. In practice, eose
to first create 20 restore stubs and reuse them. Becauserttve Li
kernel has a small fixed-size stack (only 4KB in our testediégr
the call stack of the Linux kernel is usually not very deep.isTh
number is large enough for all the experiments we tested.

2In an architecture with variable-length instructions,sas the In-
tel x86, the return address may not even refer to a validungtn.
3Since the return address is actually within the code buffehis
case, the routinedynamic_call maps it back to an address that,
when passed to the dynamic loader by the restore stub, chtses
load the appropriate cluster into memory.

/* include/linux/sched.h */
struct task_struct {

struct thread_struct thread; {

int cluster_id;

/* arch/i386/kernel/process.c */
void __switch_to (struct task_struct *prev_p,

struct task_struct *next_p)

if (address_is_within_code_buffer ((next_p->thread).eip) {

b ovl_dynamic_loader (next_p->cluster_id);

}

Figure 4: Source code changes to handle multi-threading

3.4 Context Switches and Interrupts

There are two issues that have not been addressed in the-discu
sion so far. The first is that of multi-threading, which is atiee
typical of modern general-purpose operating system kernghe
second is that of control transfers due to interrupts.

We extend our approach to handle multi-threading via minor
(manual) modifications to the kernel code, as follows. We add
single new field to the thread state (in the Linux kernel, tinecs
turet ask_st ruct) to identify the cluster whose code is being
executed by that thread. The additional memory requiresrient
this are small, just 4 bytes per thread. This field is initiedl and
updated by the dynamic loader as needed during executior. Th
code for the scheduler is modified to check the program counte
value for a thread that is about to run, and to invoke the dyoam
loader to load the appropriate cluster into the code bufféhis
address is within the code buffer. The code changes negemsar
shown in Figure 4, where the additional code that has to lve-int
duced in our approach has been highlighted.

One issue we have not discussed is that of dealing with inter-
rupts. The problem of dealing with interrupt in the kernehitien
the kernel is executing a code clusteim the code buffer and an in-
terrupt happens, if the the interrupt handler brings a éfiecode
cluster B into the code bufferB will overwrite clusterA in the
code buffer. Once the interrupt handler finishes and theeken
ecution returns back to its previous normal executiord ifs not
reloaded into the code buffer, an error will happen. In ourent
implementation, we handle this is issue by making sure titat-i
rupt handlers are part of the core code and therefore alvesmain
in memory so that interrupt handler will not load new codestdu
into the code buffer. This, however, will obviously incredke size
of core code. There are other ways to handle this. One agpisac
to have two code buffers: one is dedicated to the normal kese
ecution other than interrupt handling; while the other ididated
only to the interrupt handling. Another approach is to mpdiife
return process of interrupt handler so that the require@ chaster
is loaded into the code buffer before the interrupt handdturns.
We are currently working on investigating and evaluatiresthdif-
ferent methods.

4. EXPERIMENTAL RESULTS

We have implemented our ideas using tha®binary rewriting
system for the Intel x86 architecture [14] and evaluatedithsing
version 2.4.31 of the Linux kernel. LPO is also used to collect
profiles for the kernel. An OS kernel like Linux kernel, does n

have well-defined entry and exit points as the ordinary apfibtn

to server as natural points to start and end profiling. Tloeegeur
system uses a special(new) system call to begin profilingeds w
as ending profiling and write out profile data. More detail®of
profiling mechanism is discussed in [13]. In our current iempén-
tation, the dynamically loaded code is still stored in menbut in

a separate section in the kernel binary. The code is loadedha
code buffer througlmentpy function call. We plan to change the
implementation to load code from secondary storage oncetue s
a developing environment that can simulate an embeddednsyst
integrated with flash memory.

To get an accurate evaluation of the efficacy of this systeen, w
began with a minimally configured kernel where as much ursiece
sary code as possible has been eliminated by configuringetinek
carefully. For our experiments, we therefore configuredLiimex
kernel to remove modules, such as the sound card and video sup
port, that are not required to run our benchmarks. We coreide
two versions for the kernel: one with networking supporg, dther
without. The kernel code was compiled wibc version 3.4.4 us-
ing the compilation flags of-‘Cs’, which instructs the compiler
to optimize for code size. The code sizes for the resultimgéls
(only the. t ext sections) are as follows:

| Kernel | Code sizdbytes) |
2.4.31, w/o networking 590,022
2.4.31, with networking 890,793

In order to simplify the booting process of the Linux kernek
modified the kernel boot up fileni t t ab so that the Linux kernel
will run in single user mode (level 1). All the experiments aon-
ducted using a Intel Pentium 4 3 GHz desktop machine with 2GB
memory installed.

We used three sets of benchmarks to evaluate our ideas: eliBen
[7], a widely used and freely available collection of beneinkpro-
grams for embedded systems; MediaBench, a suite of programs
used for evaluating multimedia and communications syst@is
and httpd, the Apache HTTP server (version 2.0.50), which was
used because it exercises more of the kernel code, and anetiff
ways, than the programs in the MiBench and MediaBench suites
Our experiments with MiBench and MediaBench used the versio
of the kernel compiled without networking, whiketpd was tested
on the kernel version containing networking.

4.1 Compaction Results

Table 1 shows the behavior of our clustering algorithm ared th
compaction results for the different benchmarks; the degsgnted

Core code siz€ Cluster Statistics Compaction Results

bound(~) No. of | Ave. cluster] Max. cluster| Total memory| Memory size

(%) Clusters| size (bytes)| size (bytes)| size (bytes) reduction (%)
- 0 250 1634 2023 255,566 56.7
Q 2 247 1635 2041 260,068 55.9
g 4 244 1634 2025 264,639 55.1
= 6 241 1635 2032 269,288 54.4
8 238 1636 2039 273,748 53.6
10 235 1638 2045 277,988 52.9
‘g 0 250 1639 2045 254,573 56.9
2 2 248 1632 2025 259,041 56.1
ks 4 245 1633 2022 263,629 55.3
3 6 242 1633 2025 268,332 545
= 8 239 1634 2026 272,762 53.8
10 236 1635 2000 277,073 53.0
0 385 1650 2039 368,600 58.6
o 2 381 1649 2042 374,948 57.9
g Z 377 1650 2043 381,289 57.2
6 373 1650 2044 387,557 56.5
8 368 1654 2042 394,121 55.8
10 364 1653 2045 400,620 55.0

Table 1: Clustering statistics and compaction results for @ferent core code size bounds with code buffer size = 2 KB

corresponds to a code buffer size of 2 KB. This value was ¢hose
because it is the page size on flash memory chip considereztin S
tion 4.2.

The first column indicates the benchmark suite being consitie
The second column gives the core code size baundicating how
much the core code is allowed to grow in size. The third column
gives the number of clusters formed. The fourth and fifth coia
give the average and maximum cluster size, respectively.sitih

4.2 Cost of Code Loading

Table 2 shows the effect of different core code growth bowmds
the runtime cost of on-demand code loading. We show datavior t
different costs: the first set of data (columns 3-5) show t#t of
booting the kernel and starting a shell(for runnitigpd, the booting
process also includes starting network and httpd servétjewthe
second set (columns 6-8) show the kernel-level cost of ngnitie
benchmark applications. Columns 3 and 6 give the total numbe
of accesses for code loading while columns 4 and 7 give tla tot

column gives the total memory size, computed as the sum of the amount of code loaded into the code buffer. The applicattxies

sizes of the memory-resident code, the code buffer and theamye
allocated by overlay manager, which includes the restoiesg600
bytes) and the cluster address table (= no. of clustefsbytes).

The size of the memory-resident code is obtained as the $ize o

the . t ext section in the compacted kerdfelThe final column
gives the percentage reduction size, measured relatiieetsize
of the original kernel (Recall that the MiBench and Media&en
programs were evaluated on a kernel without networking stipp
with original size 590,022 bytes, while thgtpd benchmark was
evaluated on a kernel with networking support, with orijisiae
890,793 bytes).

It can be seen from Table 1 that, as expected, increasingthe v
of the code size boungl leads to a decrease in the total number of
clusters. The average cluster size remains almost the satmiée,
the maximum cluster size varies for all different Since the code
buffer size is being held constant in our experiments (2 KiBJ to-
tal memory size reduction achieved decreasegaand therefore
the amount of memory-resident code—increases. The merzary s
reductions achieved are fairly consistent across our leadts,
and range from about 56%—58% for= 0 to about 53%-55% for
~ = 0.1. The next section examines the effect of different values
of v on the runtime cost of code loading.

“There is some code in thé ni t . t ext section used during the
kernel bootup process, but we did not include this in our sore-
putations because this section is deallocated, and its nyefne@d
up, after the initial portion of booting.

were run as follows: for the MiBench suite, we ran both thelsma
and large input sets that came as part of the suite; for Mextie
we used the run scripts provided with the benchmark apjicst

for httpd, we used the commartd

ab -n 5000 -c 2 http://test_addr,

which sends a total of 5000 requests, 2 at a time, to the tegtima
whose IP address is given bgst_addr. For both sets of data, boot-
ing the kernel and running the benchmark programs, the nuaibe
accesses for code loading and the total amount of code loatted
code buffer decrease as the code growth bouigiincreased.

Since our experiments were done on a relatively fast desktep
vironment, the small amount of time spent in the operatirgiesy
kernel, together with the granularity of the system cloclede it
difficult to reliably measure the effect of our dynamic codading
scheme on the total time spent within the kernel. Insteadgive
a rough estimate of the effect of such a scheme in an embedded
context.

First, we estimate the time taken for dynamic code loadirtigobu
flash memory secondary storage using manufacturer’'s dattssh
for a typical commercial flash memory currently in use. Fas,th
we (quite arbitrarily) chose the Micron MT29f2G08AAb NAND
flash memory [10]. This is a 2 GB flash memory unit where data is
stored in 2 KB pages. Data reads are done a page at a timéhg.e.,
smallest unit of data read is 2 KB), and it takes 130.9 microsds

Sab is the Apache HTTP server benchmarking tool.

Core code sizd Kernel boot data Application execution data
bound(~) No. of Total code]| Est. load No. of Total code]| Est. load
(%) accesses loadedKB) | cost(sec)| accesses loadedKB) | cost(sec)
< 0 66,736 111,842 8.68 | 811,218 1,362,556 105.46
e 2 43,933 73,817 5.71| 226,395 387,725 29.43
2 4 16,964 28,537 2.21 7,939 13,343 1.03
s 6 8,647 14,080 1.12 3,131 5,016 0.41
8 3,412 5,644 0.44 2,326 3,871 0.30
10 1,700 2,787 0.22 1,091 1,804 0.14
‘g 0 65,964 109,222 8.58 40,109 67,016 5.21
2 2 27,802 46,825 3.61[17,992 30,100 2.34
K 4 11,389 19,037 1.48 4,131 7,015 0.54
3 6 5,831 9,472 0.76 2,632 4,244 0.33
= 8 3,130 5,009 0.41 929 1,536 0.12
10 1,723 2,861 0.22 646 1,069 0.08
0 96,111 163,719 12.49| 162,027 261,364 21.06
o] 2 23,735 39,375 3.09] 51,229 78,517 6.66
§ 4 11,078 18,326 1.44| 10,451 17,194 1.36
6 2,861 4,657 0.37 341 567 0.04
8 1,620 2,708 0.21 529 906 0.07
10 1,030 1,696 0.13 405 688 0.05

Table 2: Runtime cost of dynamic code loading for different ore code growth bounds

to read each page. We estimate the cost of code loading as

Est.Cost = Z [

i

size(7)
2048

T x access(i) x 130.9us,

wheresize(i) is the size of clusterandaccess (i) is the total num-
ber of times of which cluster was loaded into code buffer. The
estimated cost is shown in columns 5 and 8 in Table 2.

Secondly, we tried to evaluate the impact of dynamic codé-loa
ing on the performance of the application programs runnimghe
kernel. We estimate this by considering the time taken tceash
of the three benchmarks on an unmodified kernel (i.e., theafos
code loading is zero). On average, the total time for runeiach
benchmark on an unmodified kernel is as follows:

[Benchmark | Running timeg(sec) |

MiBench 18.82
MediaBench 3.53
httpd 3.82

Using MiBench as an example, what the data shown is that, if we
were to use dynamic code loading on our desktop environment,
ing the flash memory described above, choosirg 0 would yield
a 56.7% reduction in code size, but would lead to an exectitioa
of 18.82 + 105.46 = 124.28 secs, i.e., almost 7 times of the run-
time on an unmodified kernel. On the other handfee 10%, we
see a 52.9% reduction in code size while the total runtime goe
18.82 + 0.14 = 18.96 seconds, an increase smaller than 1%. Fig-
ure 5 shows that for all three benchmarks, the overhead afrdin
code loading reduces significantly when code growth bouriakis
creased from 0% to 4%. The reason for this dramatic perfocman
improvement is not hard to see: if the frequently executetispa
of the kernel is kept in memory, they will not have to be loaded
repeatedly from secondary storage.

It is important to note that these numbers are a conservagive
per bound on the runtime overhead that would actually beriadu
on an embedded platform. The embedded platforms our teedniq
is aimed at are likely to be considerably slower than the sk

used for our experiments, which means that the time takearto r
the whole MiBench would be correspondingly much greaten tha
the 18.82 seconds used for these calculations. Since thenflas-
ory characteristics remain the same, it seems reasonaluento
clude that the actual runtime overheads experienced ontaalac
embedded system would be even lower.

5. RELATED WORK

Code compaction of operating system kernels has been eonsid
ered by Chanett al. [3, 2] and Heet al. [8]. They apply traditional
size-reducing compiler optimizations to eliminate deaateach-
able, and duplicate code [3, 8] and compression of rarelgiere
code with on-demand decompression [2]. These works keeg all
the compacted kernel in memory, which limits the extent ofime
ory footprint reduction they are able to achieve.

There has been a great deal of other work on automatic code
compaction (see the survey by Beszédeal. [1]). Most of this
work focuses on application code and does not address thglieom
cations that arise in dealing with operating system kernels

We are not aware of a great deal of other work on binary rewrit-
ing of operating systems kernels. Flowetsl. describe the use
of Spike, a binary optimizer for the Compaq Alpha, to optieniz
the Unix kernel, focusing in particular on profile-guidedieday-
out [6]. This work focuses on improving execution speed eath
than reducing code size and therefore uses techniques Wy d
ent from ours.

Recently, some researchers have begun exploring the useref o
lays out of flash memory to reduce memory requirements in dmbe
ded systems. Past al. describe a scheme for generating dynamic
code overlays for programs that can be modeled using synchso
data flow, which makes it possible to determine a static adbed
for the program’s code [12]. Past al. describe an application-
specific demand paging mechanism for low-end embeddedsyste
that do not have virtual memory [11]. Both works limit theirctus
to application programs and do not address the numeroussissu
peculiar to operating system kernels that arise in thisedant

Mibench MediaBench httpd
140 T T

©

T T T T T T T
Overlay kernel —+— Overlay kernel —+— Overlay kernel —+—

120 Unmodified kernel ------- Unmodified kernel ------- Unmodified kernel -------

©
T

100

S
T

80

60

Runtime (sec)
o
T

wu
T
Runtime (sec)

Runtime (sec)

40

I
T

20

0 1 1 1 1 1 1 1 0 1 1 1 1
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

Code growth bound (%) Code growth bound (%) Code growth bound (%)

w

Figure 5: The estimated runtime cost of kernel with overlay omparing with unmodified kernel

Eggeret al. describe dynamic code placement techniques and synthesis for embedded systems, pages 223-233, New York,

memory management strategies for scratchpad memory incembe NY, USA, 2006. ACM Press.

ded systems [4] [5]. Their interest focuses on improvingaverall [5] Bernhard Egger, Jaejin Lee, and Heonshik Shin. Scratthp

performance of system instead of reducing the memory requir memory management for portable systems with a memory

ment. They also apply their work only on application progsam management unit. IEMSOFT ’*06: Proceedings of the 6th
ACM & |EEE International conference on Embedded

6. CONCLUSIONS software, pages 321-330, New York, NY, USA, 2006. ACM

Recent years have seen an increasing trend towards the use of Press. .
general-purpose operating systems, such as Linux, in etebed [6] R. Flower, C.-K. Luk, R. Muth, H. Patll,.J..Shgkshober,
systems. This solution, however, this has the disadvartisate R. Cohn, a_nd P.G. L_owney. Kernel opt_|m_|zat|ons and
general-purpose OS kernels, by their very nature, contéoh af prefs;?h with tggbs plil(<e .exeCeLétablde optlmllzerHIrpc.. 4th
code that is not needed in an embedded context. This is a prob- }/F\DSD O?Z)Orlgicem?)cer{z)é)rg(lzt and Dynamic Optimization
lem because embedded devices typically have a limited anofun ’ X :)
memory available. This paper describes an approach toireguc 7] M. Guthaus, J. Ringenberg, D. Emst, T. Austin, T. Mudge,

the memory requirements of the OS kernel using an on-demand and T. Brown. MiBench: A_free, commercially representative
code overlay mechanism. Our approach is based on a post-link embedded benchmark suite. pages 3-14, December 2001.
time binary rewriter that uses edge profile information torgaut (8] H. He, J. Trimble, S. Perianayagam, S. Debray, and
code clustering. Experiments with the Linux kernel showt the G. Andrews. Code compaction of an operating system kernel.
are able to reduce the memory requirements of the kernel trode In Proc. Fifth International Symposium on Code Generation
53% with little degradation in performance. and Optimization (CGO), pages 283-295, March 2007.
[9] C. Lee, M. Potkonjak, and W. H. Mangione-Smith.
Mediabench: a tool for evaluating and synthesizing
7. ACKN_OWLEDGMENTS_ multimedia and communications systemsPhoc. 30th
We would I|I§e to thank Gernot Heiser and the anonymous re- IEEE International Symposium on Microarchitecture (Micro
viewers for their helpful comments on drafts of this papet &omu '97), pages 330-335, December 1997.
Perinayagam for his work on the binary rewriter tool. [10] Micron Technology. Small block vs. large block NAND
devices. Technical Report Technical Note TN-29-07 (Rev.
8. REFERENCES B), February 2006.
[1] A. Beszédes, R. Ferenc, T. Gyiméthy, A. Dolenc, and [11] C. Park, J. Lim, K. Kwon, J. Lee, and S. L. Min.
K. Karsisto. Survey of code-size reduction metho&aM Compiler-assisted demand paging for embedded systems
Computi ng SJFVQ/S, 35(3):223—267 2003. with flash memory. IEEMSOFT ' 04: Proceedings of the 4th
[2] D. Chanet, B. De Sutter, B. De Bus, L. Van Put, and K. De ACM international conference on Embedded software, pages
Bosschere. Automated reduction of the memory footprint of 114-124, New York, NY, USA,' 2004. .
the linux kernel ACM Transactions on Embedded [12] H. Park, K. Oh, S. Park, M. Sim, and S. Ha. Dynamic code
Computing Systems. To appear. overlay of sdf-modeled programs on low-end embedded
[3] D. Chanet, B. De Sutter, B. De Bus, L. Van Put, and K. De sI,DysFems. ItrDA'I;E 06: dPtr;tCt_aedllzngs of the conf%rzgczzg
Bosschere. System-wide compaction and specialization of zgg'gn' automation an INEUrope, pages - '
the Linux kernel. InProc. 2005 ACM SIGPLAN/SIGBED ")
Conference on Languages, Compilers, and Tools for [13] M. Rajagopalan, S. Perinayagam, H. He, G. Andrews, and
Embedded Systems (LCTES 05), pages 95-104, June 2005. S. Debray. Binary rewriting of an operating system kernel. |
[4] Bernhard Egger, Chihun Kim, Choonki Jang, Yoonsung Proc. Werkshop on Binary Instrumentation and Applications,

Nam, Jaejin Lee, and Sang Lyul Min. A dynamic code October 2006. .
placement technique for scratchpad memory using postpass [14] B. Schwarz, S. K. Debray, and G. R. Andrews. Plto: A
optimization. INCASES’ 06: Proceedings of the 2006 link-time optimizer for the Intel IA-32 architecture. Proc.
international conference on Compilers, architecture and 2001 Workshop on Binary Translation (WBT-2001), 2001.

