
Automated Debugging using Path-Based Weakest
Preconditions

Haifeng He and Neelam Gupta

hehf@cs.arizona.edu ngupta@cs.arizona.edu
Dept. of Computer Science, The University of Arizona, Tucson, Arizona 85721

Abstract. Software debugging is the activity of locating and correcting erro-
neous statements in programs. Automated tools to locate and correct the erro-
neous statements in a program can significantly reduce the cost of software de-
velopment. In this paper, we present a new approach to locate and correct an
erroneous statement in a function. We assume the correct specification of the
erroneous function is available in the form of preconditions and postconditions
of the function. Our approach combines ideas from software testing and weak-
est preconditions used in correctness proof methods to locate a likely erroneous
statement. We have implemented our approach and conducted experiments with
several small programs. In our experiments, our approach was able to locate the
erroneous statements in a large number of cases. Our preliminary experimental
results show that our approach has potential for development of an automated bug
location and correction tool.
Keywords: Fault location, software testing, weakest precondition, postcondition.

1 Introduction
Software debugging is the process of locating and correcting erroneous statements in a
faulty program. It is an expensive and challenging activity requiring understanding of
the program and is often done manually by the programmers. Automated tools that help
the programmers in locating the erroneous statements can significantly reduce the cost
of software development.

The program slicing based approaches [1, 11, 15] extract a subset of program state-
ments that can effect the values of variables at the point where a fault is manifested. A
novel approach to automatically isolate cause-effect chains, that have higher precision
than static or dynamic slices, has been developed in [19, 9]. Approaches based on dy-
namic invariant detection [8, 16] to give warnings about program anomalies have also
been developed. All these approaches assist the programmers by narrowing down the
search for erroneous statements to a subset of program statements. However, they do
not generate the exact modifications to be made to the program to automatically cor-
rect the errors. To determine the exact nature of an error and check whether it lies in
the localized program statements, the programmers have to modify the program and
re-execute the program until they obtain correct output.

In this paper, we develop an approach to automatically localize and correct an er-
roneous statement in a faulty function. Our approach assumes that the precondition and
the postcondition of the function are available as first order theory formulas (FOT) [6]

formulas over a finite domain. We also assume that a test suite for a given test adequacy
criteria for structural testing of the given function is available. In our current work, we
also assume that there is at most one error statement in the faulty function to avoid in-
teraction among multiple errors. Our method takes as input an error trace generated by
executing some failed test case in the test suite of the function. The notion of weakest
precondition [5, 7] of a statement in a program for a given postcondition of the program
has been used for proving program correctness. In this paper, we define a notion of
path-based weakest precondition for statements along a path in a program. Using this,
we also define the notions of a hypothesized program state and an actual program state
at every point along the error trace. Our algorithm traverses the statements along the
trace in reverse order of execution and compares these states at each point along the
trace to detect an evidence for a likely faulty statement. It then generates modifications
to the function to remove this evidence. The algorithm terminates if a modified function
successfully executes all the test cases in the test suite. If all the statements along the
current error trace have been processed and the algorithm fails to correct the error, an-
other error trace (corresponding to another failed test case in the test suite) is tried until
all the error traces have been attempted.

We have implemented our algorithm and conducted experiments with several small
programs by introducing one error at a time. In our experiments, our technique was able
to correct errors such as a wrong relational operator used in a branch predicate, wrong
variable used in a branch predicate, wrong variable used in an assignment statement,
incorrect constant used in an assignment statement and some cases of incorrect number
of loop iterations. Our approach requires normal termination of the program execution
for the input that generated the error trace so that the postcondition can be evaluated for
this input. Therefore, it is not able to correct errors that result in a non-terminating loop
or result in segmentation faults such as due to illegal memory access.

The organization of this paper is as follows. The terminology used and the details
of our approach are explained in section 2. The steps of our algorithm are described in
section 3. The experiments are presented in section 4, the related work is discussed in
section 5 and conclusions are mentioned in section 6.

2 Our Approach

The problem addressed in this paper can be stated as follows:

Problem statement: Given a faulty function
�

with a single error statement, a test suite���
for

�
, an error trace of

�
generated by

���
, and the precondition and postcondition

of
�

in the first order predicate logic, localize and modify a statement in the error trace
so that the modified function is able to pass the test cases in

���
.

First, we execute
�

with
� �

and identify the set of error traces i.e., the set of execu-
tion traces for which the postcondition of

�
evaluates to False. We select any one of

these error traces for locating and correcting the error in the function. We also express
the postcondition in disjunctive normal form using the input for the trace. Having the
postcondition in disjunctive normal form, we only need to guarantee the validity of one

conjunction in the postcondition to satisfy the postcondition. We select any one of the
conjunctions in the evaluated postcondition for the error trace for locating and correct-
ing the error in the error trace and call it postcondition conjunction � . If the algorithm
is unable to fix the error for given trace with the selected postcondition conjunction,
another conjunction in the postcondition conjunction is selected. The steps of our algo-
rithm are shown in Figure 2. Next, we describe our representation of an error trace. We
illustrate our approach with a faulty program Max to compute a maximum element in
an unsorted array of integers, shown in Figure 1(a). In this program, incorrect relational
operator is used in line 4. An error trace with the input � []= (-2, 5, 3), � =3 is shown in
Figure 1(b).

int Max(int a[], int n) �
int i, s;
precondition n � 0
1: i = 1;
2: s = a[0];
3: while (i < n) �
4: if (s � a[i])
5: s = a[i];
6: i = i + 1;�

return s;
postcondition�

i:0 � i 	 n, s � a[i]
�
i:0 � i 	 n, s=a[i]�

precondition (n � 0)
< ��
���������� > ���������
< 1,1> i=1
<2,2> s=a[0]
<3,3> (i-n 	 0)
<4,4 > (s-a[i=1] 	 0)
<5,6> i=i+1
<6,3> (i-n 	 0)
<7,4> (s-a[i=2] 	 0)
<8,6> i=i+1
<9,3> (i-n � 0)

postcondition
((s-a[0] � 0) �
 (s-a[1] � 0) !"
 (s-a[2] � 0) !"
 (s-a[0]=0 �) #
((s-a[0] � 0) �
 (s-a[1] � 0) !
 (s-a[2] � 0) !
 (s-a[1]=0 !) #
((s-a[0] � 0) �
 (s-a[1] � 0) !
 (s-a[2] � 0) !
 (s-a[2]=0) !)

Fig. 1. (a) A Program Max 1.(b) A trace of Max with the input $ []=(-2, 5, 3), � =3.

2.1 Representation of an error trace

An error trace is the execution history of a failed test case. We define it as a sequence
of executed instances of statements (assignments, branch predicates, input/output state-
ments) and evaluated precondition and postcondition of the function. We define an exe-
cution point % , (%'&)(+*��) in a trace as the entry of the %�,.- statement instance executed in
the above sequence. We use bottom to denote the exit point of the last (�/,.-) statement
in the trace.

We use a tuple 01%2*4365 to indicate an instance of an executed statement in an
error trace, where % is the execution point of the statement instance in the error trace
and 3 is the line number of the statement in the program. For simplicity, we assume
that there is only one statement at a line in the program. Since the execution point of a
statement instance is unique in a trace, we denote a statement instance at 07%8*�395 as:';�<=;?>

. An error trace generated by executing the function in Figure 1(a) with the input
� []=(@BAC*8DE*GF), � = F is shown in Figure 1(b).

Representation of branch predicates. We define an atomic predicate as having the
form ���������	�
����
�����
 ��� ;�� , where ������� is an arithmetic expression without a constant
term, �
����
�� is a relational operator (0 *�� * 5 *�� * & *��&) and ��
 ��� ; is a constant term.
At present, we have considered the branch predicates that use only real, integer and
character data types. The branch predicates along the trace are represented in the above
form. For example, the while predicate (i 0 n) at line 3 in Figure 1(a) is formalized
as

:';�< ;��
:(i-n 0 0) in the error trace in Figure 1(b). The compound predicates are

represented in disjunctive normal form i.e., one that has the form � = �� "!$#%#&#�!'��(,
where each � > has the form) +* #,#-# *)�. and each predicate) > is an atomic predicate
represented in the above standard form.

During program execution, the values of the array indices are known. We denote
an array element in the trace as array[idx = const], where array is the name
of the array, idx is the expression for the index of the array element in the program,
and const is the value of idx for the input used for the trace. In addition, if a branch
predicate evaluates to true, then it is shown in the trace as it is; otherwise, its negation,
which must be true, is shown in the trace. For example, let us consider the control
statement if (s � a[i]) at line 4 in the example program in Figure 1(a). This
statement is executed at position 7 in the trace in Figure 1(b). At that point, the value
of (s � a[i]) is False. Thus, its negation is shown in the trace in Figure 1(b). The
corresponding statement instance in the trace is

: ;�<=;0/
: (s-a[i=1] 0 0). Next, we

describe our representation of precondition and postcondition of a program.

Representation of precondition and postcondition. Using the program input for the
error trace, we transform the precondition and postcondition of the program into the
disjunctive normal form. The transformation is done in two steps. First, during the ex-
ecution, the precondition and postcondition are transformed into quantifier-free predi-
cates. Using the program input for the error trace, the universal quantifier 1 is expanded
as a conjunction and the existential quantifier 2 is replaced with a disjunction. For ex-
ample, for � & F , the quantifier 1 %43657� %B0 � *8�9� �;: %=< in the postcondition of the
program in Figure 1(a) is expanded as �=�>� �;: 5�< � * �?�'�7�;: (�< � * �=�>� �;: A
< � . An ex-
istential quantifier is expanded as a disjunction. For example, for � &6F , the quantifier
2 %-3@5A� % 0 � *�� & �;: %?< in the postcondition of the program in Figure 1(a) is expanded
as �=� &7�;: 5�< � !��=� &7�;: (�< � !��=� &7�;: A
< � . The second step is to convert quantifier-free
precondition or postcondition into the disjunctive normal. For the trace in Figure 1(b),
we obtain the postcondition in the disjunctive normal from as below.

BCB�DFE $�G H�I��JH�K
 B�D+E $LGNM8I��OH�K�
 B�D+E $�G PQI��OH�K
 B�DRE $LG H�ITSUH�KCK�#BCB�DFE $�G H�I��JH�K
 B�D+E $LGNM8I��OH�K�
 B�D+E $�G PQI��OH�K
 B�DRE $LGNM8ITSUH�KCK�#BCB�DFE $�G H�I��JH�K
 B�D+E $LGNM8I��OH�K�
 B�D+E $�G PQI��OH�K
 B�DRE $LG P�ITSUH�KCK
We classify a predicate that evaluates to true with the given input as a positive pred-

icate and a predicate that evaluates to False with the given input as a negative predicate.
We use a superscript on each atomic predicate in the postcondition to show the truth
value of that predicate for the given input. For example, in the trace in Figure 1(a)
�=� @ �;: 5�<��V5 ��W means that this predicate evaluates to true and �=� @ �;: (�<��V5 �0X means
that it evaluates to False. Note that all the branch predicates in the trace after their
representation in the standard from are positive predicates.

2.2 Weakest precondition and Path-oriented weakest precondition

Given a program
:

and the postcondition � , the weakest precondition wp(
:

, �) repre-
sents the set of all states such that the execution of

:
begun in any of them is guaranteed

to terminate in a state satisfying � [5, 7].
In this paper, we define a weakest precondition semantics with respect to a trace, which
we call as path-based weakest precondition, or pwp for abbreviation.

Definition: Given an execution trace
�

and the postcondition � of a function
�

, the
path-based weakest precondition denoted as pwp(

�
, �) is the set of all states such

that an execution of
�

, that follows
�

, begun in any of them is guaranteed to terminate
in a state satisfying � .
The control flow in a trace is fixed so only the data dependences affect the value of
output. Assume that evaluation of control statements does not have any side effects, we
formally define pwp as below.

pwp
B�� S $C
 � K S �������

, where
�
	 $ means substituting every occurrence of

�
in
�

with $
pwp

B��
 � K S �
, where

�
is a branch predicate

pwp
B�
����
 � K S pwp

B�

 pwp
B��
 � KCK

Given a subtrace
��� >�� (�� of

�
(from execution point % to the end of trace) and a post-

condition � , we denote pwp(
��� >�� (�� *G�) as � > . For example, let us consider the trace

in Figure 1(b) and let assume that the postcondition conjunction � be
���=� @ �;: 5�< � 5 � * �=� @9�;: (�< � 5 � * �=� @9� : A�< � 5 � * �?� @ �;: 5
<�& 5 �0� . The path-based

weakest precondition at different execution points along the trace is:���
=
���

=
���

=
���

=
���

=
���

=
��

=
��!�"$#%#&"('

=
�

=
BCB�D+E $LG H�I��OH�K�
 B�D+E $�GNM0I��OH�K
 B�DFE $LG P�I��JH�K�
 B�DFE $LG H�ILS�H�KCK B�D+E $�GNM0I��OH�K()�+*

=
��,

= pwp(s=a[0],
���

) =
BCB H �OH�K
 B $LG H�I E $LGNM8I��$H�K�
 B $�G H�I E $�G PQI��OH�K�
 B H S�H�KCK()

As seen in this example, in order to compute � > at each point in a trace, we only need
to know the set of the assignment statements that are needed for computation of � > .
Definition: Given a trace

�
and the postcondition � of a function

�
, the pwpSlice: � � *8� *�% � is an ordered set of assignment statements from point % to the end of

�
, upon

which the value of � is directly or indirectly data dependent.
In other words, the pwpSlice

: � � *G� *G% � consists of all the assignment statements that
are needed for computation of � > . In the above example,

: � � *G� * (� is - :';�< ;$.0/ . At
each execution point % on an error trace, we compare the atomic predicates in the predi-
cate representing the set of hypothesized program states and the predicate representing
the set of actual program states to look for an evidence for locating the error in the
trace.

2.3 Hypothesized program state

The set of hypothesized program states at an execution point along the trace is rep-
resented by a predicate in disjunctive normal form derived from the postcondition as
explained below.

Definition: Given a trace
�

and a postcondition � of a function
�

, the set of hypothe-
sized program states at an execution point % along the trace is defined as the path-based
weakest precondition � > = pwp(

� � >�� (�� *G�).
The set of hypothesized program states � > at any execution point % , (% =1, �) along

the trace is computed as � > = pwp(
:';�< ;?> *8� >����) for i=1, n-1 and � (= pwp(

:';�< ; (*G�).

2.4 Actual program state

The set of actual program states at an execution point along a trace is represented by a
predicate in disjunctive normal form that is actually true for the given input. It consists
of a set of forward program states,

� X>
, and a set of backward program states,

���>
. The

set of forward program states
� X>

at an execution point % along a trace
�

is defined as:� ! * = positive conjunctions in precondition.� !� = (
� !�	� * -
 �.� ���	� *) �
� � � �	� * , i=1,n� !!�"$#%# "$' = (

� !� -
 �.� � �) �
� � � � , i=1,n
where � %C�=� >���� is the set of predicates killed by statement instance

:';�< ; >����
and �@� � >����

is the set of predicates derived from
:';�< ; >����

. A predicate � is killed by
:';�< ; >����

if
there is a variable in � that is defined at

:';�< ; >����
. For example, (i-n 0 0) is killed

by statement i=i+1. Since % is redefined, after i=i+1 is executed, (i-n 0 0) may
not hold. If

:';�< ; >����
is an assignment statement, then an equivalence is derived from:';�<=; >����

. If
:';�< ; >����

is a branch predicate, then �@� � >���� is the set of predicates in:';�<=;?>
. The computation of the set of forward program states

� X� for the error trace in
Figure 1(b) is shown below.� ! * = (n � 0)� !, = (n � 0)
 (i=1)� !� = (n � 0)
 (i=1)
 (s=a[0])� !� = (n � 0)
 (i=1)
 (s=a[0])
 (i-n 	 0)

Given an execution point % , the set of backward program states at % are defined as:���� = pwp(���4� � �
 ������ *), if � �4� � � is an assignment statement� �� = ����� � �
 � ���� * , if � �4� � � is a branch predicate� �!�"$#%# "$'
= � �

We illustrate the computation of the set of backward program states for the error trace
in Figure 1(b).� � *

= (3-n � 0)
 (a[0]-a[2=2] � 0)
 (2-n 	 0)
 (a[0]-a[1=1] � 0)
 (1-n 	 0)� �,
= (i+2-n � 0)
 (a[0]-a[i+1=2] � 0)
 (i+1-n 	 0)
 (a[0]-a[i=1] � 0)
 (i-n 	 0)� ��
= (i+2-n � 0)
 (s-a[i+1=2] � 0)
 (i+1-n 	 0)
 (s-a[i=1] � 0)
 (i-n 	 0)� ��
= (i+2-n � 0)
 (s-a[i+1=2] � 0)
 (i+1-n 	 0)
 (s-a[i=1] � 0� ��
= (i+2-n � 0)
 (s-a[i+1=2] � 0)
 (i+1-n 	 0)� ��
= (i+1-n � 0)
 (s-a[i=2] � 0)
 (i-n 	 0)����
= (i+1-n � 0)
 (s-a[i=2] � 0)� ��
= (i+1-n � 0)� �
= (i-n � 0)� �!�"$#%# "$'

= � �
Finally, we define the set of actual program states

� >
as

� > & �@X> * ���>
.

2.5 Detection of evidence

A predicate � is less restrictive than predicate � if there is some state in � , which is not
contained in � , or in other words, � � � ��� � ��� � is False. An evidence at an execution
point % indicates that the predicate

� >
representing the set of actual program states is less

restrictive than the predicate � > representing the set of hypothesized program states. We
define two types of evidences explicit and implicit.

Explicit Evidence. An explicit evidence shows that the set of actual program states
represented by

� >
and the set of hypothesized program states represented by � > are

disjoint and thus
� > � � > is False; or in other words,

� >
is not stronger than � > at this

program point. Currently, we consider two special cases to detect that the set of states
in
� >

and � > are disjoint. We refer to them as explicit evidence of Type I and explicit
evidence of Type II.

Definition: If at an execution point % along a trace, a negative atomic predicate of the
form � 3�5-�
����
��%��
 ��� ; , i.e., without any variables, appears in the predicate � > represent-
ing the set of hypothesized states, then � constitutes an explicit evidence �����	��
 >
��> , (� ��� ,
� , %) of Type I.
Let � be a formalized negative predicate in � > that has the form �=5@�
����
�� ��
 ��� ;�� , i.e.,
there is no variable involved in the predicate � . For example, (0 5 2) is such a False
predicate. Since

� >
evaluates to True and False is the strongest predicate, it is obvious

that
� >

is less restrictive than � .
Definition: At an execution point % in a trace, let � 3�� ������� �
���=
�� ��
 ��� ; � be an atomic
predicate in

� >
and � 3�� �������+�
����
��A��
 ��� ; . be a negative atomic predicate in � > . Then,

� and � form an explicit evidence � ������
 >���> , ��� *�� *�%
�

of Type II iff ��������� = ��������� .
Since � evaluates to true and � evaluates to False in the given trace, if ������� � = ������� � ,
then for this trace � exercises a state not contained in the set of states represented by � .
The symbolic difference between � and � provides us a clue to what modification should
be done to the program so as to remove this evidence of � � � being False. For example,
for the error trace in Figure 1(b), predicate

���/
representing the set of actual program

states contains a predicate (s-a[i=2] � 0) and the predicate � / representing the
set of hypothesized program states contains another predicate (s-a[2] � 0). These
two predicates form an explicit evidence � ������
 >
��> , ((s-a[i=2] � 0), (s-a[2] �
0), 7). Note that a[i=2] and a[2] refer to the same variable.

Implicit Evidence. An implicit evidence � > . ��
 >���> , ���
�

is indicated by a negative pred-
icate � in � � that is not present in an explicit evidence. For each implicit evidence
� > . ��
 >
��> , � �

�
in � � , we consider that the trace is lacking a constraint on � . For example,

let consider the � � for the postcondition conjunction:
� = ���?� @ �;: 5�< � 5 ��W * �=�B@9�;: (�<�� 5 ��X * �=�B@ � : A�< �V5 ��X * �?� @ �;: 5�< & 5 ��WR� .

The corresponding � � = �0�.�;: 5
<�@ �;: (�< � 5 ��X * �.�;: 5�< @ �;: A
< � 5 ��X+� . And,���
= (3-n � 0) * (a[0]-a[2=2] � 0) * (2-n 0 0) * (a[0]-a[1=1] � 0) * (1-n 0 0) * (n 5 0).

However, in this example both the negative predicates in � � have corresponding pred-
icates in

� �
that form explicit evidence of Type II. Therefore, there is no implicit evi-

dence at the top of the trace in this example.

2.6 Location of a likely erroneous statement and generation of modification

After an evidence of the predicate
� >

being less restrictive than � > is detected at an exe-
cution point % , the goal is to locate a statement instance at some point 3 in the trace such
that a modification to

:';�<=; �
will remove the evidence at % . From the predicates involved

in an evidence, we determine a problem predicate and a correcting predicate. These two
atomic predicates are treated as character strings and the symbolic differences between
these two strings are computed. We then use these differences to generate a modification
to a statement along the trace so that the detected evidence is removed from the trace.
The modified function is tested with the given test suite to check if the error is removed.
Otherwise, if possible another modification to remove the evidence is generated. If the
evidence cannot be removed by all attempted modifications at the execution point % ,
the algorithm moves on to process next statement in the trace. Note that our algorithm

Input: An error trace � , postcondition conjunction
�

and test suite ���
Output:

B�D������
	�� $+�.�
?��
���K , where mod is a modified statement in the program.
procedure � � ��
 � ��� ���%B �
 �
�� � K

for each execution position ����� from � S � to M do
step1: Compute set of actual program states

���� and set of hypothesized program states
� �� .

for each negative predicate ��� � �� do
step2: if an ��� �� �! �#"4� # B $ �%$C
&��
��=K detected then Type I Explicit Evidence

Generate and test modifications that change the form of � at � .
if testing successful then � �2� � � � B�D����'�
���
(��K endif

step3: elseif an ��� ��
! �)"�� # B+*
&�
4�=K detected then Type II Explicit Evidence
Generate and test modifications that either change the form of

*
at �

or change the form of � at � to remove the evidence.
if testing successful then � �2� � � � B�D����'�
���
(��K endif

endif
endfor

endfor
step4: for each negative predicate ��� � � *

not present in any explicit evidence do
Consider Implicit Evidence � � ' �! �)"�� # B ��K
if � � '
! �)"�� # B ��K indicates a missing loop iteration(s) then

Generate modification to add missing loop iteration to actual program state.
Test Modified Program.
if testing successful then � �2� � � � B�D������ S M
���
(��K endif

else
Generate and test modifications that either change form of � at the

top of the trace or change the form of a predicate
*

in
� � �*

.
if testing successful then � �2� � ��� B�D����'� S M
���
(��K endif

endif
endfor
return

� $ �.�
endprocedure

Fig. 2. The AutoDebug algorithm

will terminate successfully if no error trace is generated when the modified function

is executed with the given test suite. However, that does not necessarily mean that the
modified program is correct. All it means is that the original function was not able to
pass all the test cases in the given test suite whereas the modified function is able to
pass all the test cases in the test suite. The correctness of the solution is clearly depen-
dent upon how thoroughly the test suite tests the program. It may also be helpful to take
input about whether the modification generated by our algorithm will be acceptable to
the developer.

3 Description of the Algorithm
In this section, we discuss the steps of our algorithm shown in Figure 2 for automati-
cally locating and correcting an erroneous statement in a function.

Step 1: Compute the predicates representing the sets of actual and hypothesized
program states. At the entry of each instance of an executed statement

:';�< ; >
in the

given error trace
�

, we compute the predicate
� >

representing the set of actual program
states and the predicate � > representing the set of hypothesized program states. We ap-
ply two rules of inference: transitivity and equality to deduce new predicates from other
predicates in each of the program states. Deduced predicates are added to respective
set of program states until no new atomic predicates can be deduced. In the remaining
paper, we use

���>
and � �>

to represent the extended sets of
��>

and � > respectively after
including deduced predicates.

Step 2: Detect and fix explicit evidence of Type I. In this type of evidence, there is a
negative predicate � that does not contain any variables and is present in the predicate
� �>

representing the set of hypothesized program states. For example, let a predicate is
(10=0) be present in � �>

at an execution point % on an error trace. Then, it forms an
explicit evidence � ������
 >
��> , (� ��� , (10=0), i) of Type I.

Generate Modification. The next step is to generate modifications for the statements
that would remove the above evidence by changing the form of � at execution point %
where evidence is detected. We change the form of � by matching � to a predicate which
is implied by the actual program state so that the atomic predicate in the postcondition
� corresponding to � will be satisfied if the same trace is followed. We consider the
following two approaches to change the form of � at % .

First, if the relational operator in � is =, then we match � to the positive predicate� � � � . For relational operator =, we define the
� � � � predicate to 0=0. Note that the

form of � can be changed only by an assignment statement between execution point %
and the end of trace. It is obvious that modifying an assignment statement in the pwp-
Slice of � can change the form of � . However, modifying the LHS of an assignment not
in the pwpSlice of � can also change the form of � at execution point % . Therefore, we
consider each assignment statement between the point % and the

�
 ;�;
 < of the trace as a
possible candidate for modification. Let

: ;�<=; �
be the next assignment statement to be

considered and let the predicate in � ��
corresponding to � be � � . The goal of transform-

ing � to 0=0 can be attained by making � � & ��5�& 5 � , i.e., pwp(
:';�< ;�� *�� � ����� = �=5�& 5 � .

It is obvious that if � ����� & ��� � @ ����� , then pwp(�	���9& ��� �+*���������� & 5 �) will be

��5�& 5 � . Therefore, we consider � � ��� as the correcting predicate � and the equivalence
derived from

:';�< ;��
as the problem predicate � .

We consider � and � as a set of strings of characters and compare them to compute
the difference � � between � and � and the difference � � between � and � . In our current
work, we assume that the error is either on LHS or on RHS of an assignment statement
but not on both sides of the assignment statement. If � � appears on RHS of the assign-
ment statement

: ;�<=; �
, the modification is generated to replace � � in

:';�<=; �
by � � . If

� � appears on LHS of
: ;�<=; �

, the modification is to replace � � in
:';�<=; �

by � � only if
� � is a single variable.

If the evidence cannot be removed by the above modifications, or if the relational
operator in � is not =, we then try our second approach to generate modifications ex-
plained below. We generate additional modifications by matching � to each predicate �
in the predicate

���>
with same relational operator as that of � . Note that the predicates

in
� �>

are all positive predicates in the trace, so they are consistent with each other. By
matching � to a predicate in

���>
other than � , � becomes consistent with � . Thus, in

this case � is the problem predicate � and a predicate � in
� �>

is used as a correcting
predicate � . As before, we compute � � and � � . If modifications generated at execution
point % are not successful in removing the evidence, as before we propagate this match-
ing to execution points � 5 % so that the effect of matching at the execution point � is
to remove the above evidence at the execution point % . However, there is a difference.
Now a matching at � can be performed only if the predicate � � corresponding to � is
present in

����
i.e., it is not killed by some assignment between execution points % and

� . In addition, in order to make sure that the modification to an assignment
:';�< ; �

at
execution point � will change the form of � at execution point % , we need to check for
the following. If the modification is for RHS of an assignment statement

:';�< ; �
, then:';�<=;��

must belong to the pwpSlice of � . However, if the modification is for the LHS of
the assignment statement, we need to make sure that after modification, the assignment
will appear in the pwpSlice of � .
Test Modification. Each of the modification generated above is applied to the original
program. The modified program is then executed for all the test cases in the given test
suite. If the modified program passes all the test cases in the test suite then we consider
that the error has been corrected. Each of the above modification is tested until a version
of the program passes the test suite. If all the above modifications have been tried and
the fault is not fixed, the algorithm moves onto to detect next evidence.

Step 3: Detect and fix explicit evidence of Type II. In this step we detect and fix an
explicit evidence, in which a predicate � in

��� �>
and a negative predicate � in � �>

have
the same expression on LHS. This evidence also shows that the set of states in

� �>
are

disjoint from the set of states in � �>
. To illustrate this, let us assume that

� X �>
,
��� �>

and
� �>

at an execution point % on an error trace are given as below.� ! �� :(n � 0)
 (i=0)
 (s=0)
 (i-n 	 0)� � �� :(i-n+1 � 0)
 (s-a[i=0] � 0)� �� :(s-a[0] � 0) !
 (s-a[0]=0) !
Two explicit evidences of Type II are detected at execution point % . They are

� * = � � �� �! �#"4� # ((s-a[i=0] � 0), (s-a[0] � 0), i)
� , = � � �� �! �#"4� # ((s-a[i=0] � 0), (s-a[0]=0), i)

For an evidence � � �	��
 >
��> , � � *�� *G%
�

of Type II, either � or � could be in error. Therefore,
the modifications for changing the form of � to � at % or changing form of � to � at %
are generated. The modifications for changing the form of � are generated in the same
manner as described for explicit evidence of Type I. To change the form of � to match
to � , we can either change the original branch predicate from which � may be derived,
or we can change an assignment statement on the trace. Note that a modification to an
assignment statement cannot change the relational operator of � . Therefore, if the rela-
tional operators of � and � are different, we directly modify the branch predicate from
which � may be derived.

Step 4: Detect and fix implicit evidence. Implicit evidences are detected at the top of
the error trace. For each negative atomic predicate � in � ��

that is not present in any
explicit evidence, we form an implicit evidence as � > . ��
 >
��> , � �

�
. Having an implicit ev-

idence � > . �	
 >���> , � �
�
, we check whether the cause for the evidence is because some loop

iterations are missing from the trace. If there is a loop in the trace, which contributes
some constraints on � ��

, and the missed constraints have similarity with the constraints
added by the loop, then our algorithm attempts to derive the possible missing iterations
in the loop and generates modification to a statement that would add those iterations
into the trace. This modification is then verified by executing the modified program
with the test suite.

If the implicit evidence is not the case of a missing loop iteration(s), the algorithm
attempts to remove this evidence from � � fix the fault by generating modifications
as in Steps 2 and 3. Given an implicit evidence of � > . ��
 >���> , ���

�
, modifications to the

statements along the trace are generated by matching the negative predicate � to atomic
predicates � in

� ��
and vice versa. As in steps 2 and 3, modifications to the assignment

statements in the pwp slice of � are also generated by matching them to the component
corresponding to � in the hypothesized state at their exit. As before, each modification
is tested by executing the modified program.

4 Experiments

We have implemented our technique using C and Python languages. The autodebug al-
gorithm was implemented in C. Postconditions, preconditions and predicate deduction
was implemented using Python. The faulty program is expected to be written in a sub-
set of C using real, integer and character variables, arrays, conditionals and loop control
constructs. At present, we do not handle faulty programs using pointers. To handle func-
tion calls, we assume that the postconditions and preconditions of the called function
are given. We also assume that either the called function does not have errors, or the
trace of statements through the called function is available. The faulty program is in-
strumented to generate execution traces in the format described in the paper. We used
the following five programs in our experiments.

Sum: It computes the sum of all integers in an array a[]. This problem has simple
control structures. The postcondition of this program is a single universal quantifier
which is expanded as conjunctions during the execution.
Max: This program (in section 2) searches the maximum element in an unsorted array
of integers.
Binary search: It does binary search on a sorted integer array. Its source code, including
the preconditions and postconditions was taken from [7].
Array copy: This example is a simple program to copy the contents of an array to
another array.
Quicksort: This program, taken from [2], is for Quicksort algorithm on an integer array.
The original code does not have preconditions and postcondition so we derived them
ourselves.

We introduced an error in a statement at a time into these programs. The types of
errors introduced include wrong relational operator used in a branch predicate, wrong
variable used in a branch predicate, wrong variable used in an assignment statement, in-
correct constant used in an assignment statement, etc. We conducted experiments with
our algorithm for locating and correcting the erroneous statements. We also experi-
mented with computing program dices [1] for these faulty programs. We tried to limit
the modification only to the statements in the computed dice. If the algorithm is not
able to correct the program by modification of statements in the dice, then we ran the
algorithm without using dice. The heuristic used in [1] for picking a dice is to first form
all possible dices and then randomly choose one of them. Since there is no conclusion
about which heuristic is better, we used more conservative method. We chose the dice
with the largest number of statements so that it most likely will not miss an erroneous
statement.

4.1 Results

We show the results of our experiments in Table 1. The column labeled Line No. shows
the line number of the statement in the function in which the error was introduced.
The column labeled Orig. Stmt. shows the original statement in the correct program.
The column labeled Faulty Stmt. shows the statement after error was introduced. The
column labeled Fault Type shows the type of fault introduced such as wrong constant,
wrong operator, missing variable etc. The last column shows the output obtained from
our implementation of AutoDebug algorithm.

It is interesting to note that in rows Sum/1 and Max/3 in Table 1, the correction
generated by our algorithm was in a different statement than the one in which error
was introduced. However, modification in a statement different from the one in which
error was introduced also corrected the problem. Some of the errors resulted in non-
terminating loop and they were not corrected by our algorithm. Also, if an error resulted
in a loop executing more iterations than required, our algorithm was not able to fix it.
Other than these, our algorithm was able to fix most of the errors. Although, we had
expected dices to significantly improve the efficiency of the technique, in our experi-
ments we did not find dices to be useful in many cases. Only for 3 errors among all the
errors in Table 1, were the erroneous statements included in largest dice for the faulty
program. We also tried to consider the union of statements in all dices. However, we

did not find dices to be very useful in our examples. The reason was that in many cases,
such as in branch predicate fault and variable initialization fault, the faulty statement
was executed by all failed trace as well all correct traces. In some cases, no correct
traces were generated and hence dices were not helpful. The programs used in our ex-
periments were small and there may be benefits of incorporating dices in our technique
for large programs.

5 Related Work

The program slicing based approaches [1, 11, 15] use static or dynamic dependency
analysis to extract a subset of program statements that can effect the values of variables
at the point where a fault is manifested in the program. A novel approach to automat-
ically isolate cause-effect chains, based on the difference between the program states
of a run corresponding to a failed and a successful run, has been recently developed
[19, 9]. The cause-effect chains isolated by this approach have higher precision than
static or dynamic slices. Approaches based on dynamic invariant detection that give
programmers warnings that there are anomalies found in the program [8, 16] have also
been developed. All these approaches assist the programmers by narrowing down the
search for erroneous statements to a subset of program statements. However, they do
not generate the exact modifications to be made to the program to automatically cor-
rect the errors. To determine the exact nature of the error and check whether it lies in
the localized program statements, the programmers have to modify the program and re-
execute the program until they obtain correct output. In contrast, our approach attempts
to automatically locate the error statement and generate the correction to be applied to
the erroneous statement. In our future work, we would further analyze the type of errors
that can be detected by our approach and the types of errors in which other approaches
can be more helpful.

6 Conclusions

In this paper, we have presented a new technique that combines ideas from formal
analysis of programs and software testing to automatically locate and correct erroneous
statements. Our technique is based on matching of character strings which is guided
by removal of some symbolic evidences that make actual program state less restrictive
than hypothesized program state at some execution point. Our preliminary experiments
show that our approach is promising. In the current work, we have assumed that only
one program statement is in error. In our future work, we plan to relax this restriction
and evaluate our technique for large programs.

References

1. H. Agrawal, J. R. Horgan, S. London and W. E. Wong, “Fault localization using execution
slices and dataflow tests”, Proceedings of the Sixth IEEE International Symposium on Soft-
ware Reliability Engineering, pages 143-151, Toulouse, France, October 1995.

Table 1. Results for Sum, Max, Binary Search(
� ���), Array Copy(� ���) and Quicksort(

� �) func-
tions.

Program/ Line Orig. Stmt. Faulty Stmt. Fault Type Output
Error No. No. (Line No., Stmt.)

Sum/1 1 i=0 i=1 const:wrong (2, s=a[0])
Sum/2 1 i=0 i=2 const:wrong (1, i=0)
Sum/3 2 s = 0 s = 1 const:wrong (2, s=0)
Sum/4 4 s=s+a[i] s = a[i] var(s):missing (4, s=s+a[i])
Sum/5 4 s=s+a[i] s = i+a[i] var(s):wrong (4, s=s+a[i])
Sum/6 4 s=s+a[i] s=s+a[0] var(a):wrong (4, s=s+a[i])
Sum/7 4 s=s+a[i] s=s-a[i] op:wrong (4, s=s+a[i])
Sum/8 5 i=i+1 i=i+2 const:wrong (5, i=i+1)
Sum/9 5 i=i+1 i=i const:wrong No (infinite loop)
Sum/10 3 while(i<n) while(i<n-1) const:wrong (3, while(i<n))
Sum/11 3 while(i<n) while(i<n+1) const:wrong No (extra loop)
Sum/12 3 while(i<n) while(i+n) relop:wrong No (infinite loop)
Sum/13 3 while(i<n) while(i>n) relop:wrong No (loop not enter)
Max/1 2 s=0 s=10 const:wrong (2, s=a[0])
Max/2 5 s=a[i] s=i var(a):wrong (5, s=a[i])
Max/3 1 i=0 i=1 const:wrong (2, s=a[0])
Max/4 6 i=i+1 i=i-1 op:wrong No (system error)
Max/5 4 if(s<a[i]) if(s>a[i]) relop:wrong (4, if(s<a[i])
Max/6 4 if(s<a[i]) if(s<a[0]) var(a):wrong (4, if(s<a[i]))
Max/7 4 if(s<a[i]) if(s>=a[i]) relop:wrong (4, if(s<a[i]))
Max/8 3 while(i<n) while(i<n-1) branch:const (3, while(i<n))
Bin/1 1 i=0 i=1 const:wrong (2, i=0)
Bin/2 2 j=n+1 j=n const:wrong (2, j=n+1)
Bin/3 4 e=(i+j)/2 e=i+j op:wrong No (infinite loop)
Bin/4 6 i = e i = j var(s):wrong No (infinite loop)
Bin/5 6 i = e j = e def(s):wrong (6, i = e)
Bin/6 4 e=(i+j)/2 e=(i*j)/2 op:wrong No (infinite loop)
Bin/7 3 while(i+1!=j) while(i+2<j) const:wrong (3, while(i+2<j+1))
Bin/8 3 while(i+1!=j) while(i!=j) relop:wrong No (infinite loop)
Bin/9 5 if(a[e]<=x) if(a[e]<x) relop:wrong (5, if(a[e]<=x))
Bin/10 5 if(a[e]<=x) if(a[e]>x) relop:wrong (5, if(a[e]<=x))
Bin/11 5 if(a[e]<=x) if(a[0]<=x) var(a):wrong (5, if(a[e]<=x))
Bin/12 5 if(a[e]<=x) if(a[i]<=x) var(a):wrong (5, if(a[e]<=x))
Bin/13 5 if(a[e]<=x) if(i<x) var(a):wrong (5, if(a[e]<=x))
Arr/1 3 s1[i]=s2[i] s1[i]=s2[i+1] var(a):wrong (3, s1[1]=s2[i])
Arr/2 3 s1[i]=s2[i] s1[0]=s2[i] var(a):wrong (3, s1[i]=s2[i])
Arr/3 3 s1[i]=s2[i] s1[i]=i var(a):wrong (3, s1[i]=s2[i])
Arr/4 1 i=0 i=1 assign:const (1, i=0)
Arr/5 4 i=i+1 i=i-1 assign:arithm No (system error)
Arr/6 2 while(i<=n) while(i<n) branch:relop (2, while(i<n+1))
Arr/7 2 while(i<n) while(i>n) branch:relop No (loop not entered)
QS/1 3 last=(left+right)/2 last=(left+right)*2 assign:arithm No (out of array boundary)
QS/2 4 temp=a[left] temp=a[0] var(a):wrong (4, temp=a[left])
QS/3 5 a[left]=a[last] a[left]=temp var(a):wrong (5, a[left]=a[last])
QS/4 5 a[left]=a[last] a[last]=a[last] var(a):wrong (5, a[left]=a[last])
QS/5 8 if(a[i]<a[left]) if(a[i]>=a[left]) relop:wrong (8, if(a[i]<a[left]))
QS/6 10 if(a[i]<a[left]) if(a[i]<a[last]) var(a):wrong (10, if(a[i]<a[left]))
QS/7 11 a[last]=a[i] a[left]=a[i] var(a):wrong (11, a[last]=a[i])
QS/8 13 a[last]=a[i] a[left]=a[i] var(a):wrong (13, a[last]=a[i])
QS/9 16 i=i+1 i=i assign:arithm No (infinite loop)
QS/10 18 temp=a[left] temp=a[last] var(a):wrong (18, temp=a[left])

2. R. S. Boyer and J. S. Moore “A Computational Logic Handbook”, Academic Press, Boston.
3. L. A. Clarke and D. J. Richardson, “The application of error-sensitive testing strategies to

debugging”, Proceedings of the Symposium on High-Level Debugging, pages 45-52, 1983.
4. R. A. DeMillo, H. Pan and E. H. Spafford, “Critical slicing for software fault localization”,

Proceedings of the International Symposium on Software Testing and Analysis, pages 121–
134, San Diego, CA, 1996.

5. E. W. Dijkstra, “A Discipline of Programming”, Prentice Hall, Englewood Cliffs, NJ, 1976.
6. C. Ghezzi, M. Jazayeri and D. Mandrioli, “Fundamentals of Software Engineering”, Second

Edition, Prentice Hall, 2003.
7. D. Gries, “The Science of Programming”, Springer-Verlag, 1981.
8. S. Hangal and M. S. Lam, “Tracking down software bugs using automatic anomaly detection”,

Proceedings of the International Conference on Software Engineering, May, 2002,
9. R. Hildebrandt and A. Zeller, “Simplifying failure-inducing input”, Proceedings of the Inter-

national Symposium on Software Testing and Analysis, pages 135-145, 2000.
10. J. A. Jones, M. J. Harrold and J. Stasko, “Visualization of test information to assist fault

localization”, Proceedings of the 24th International Conference on Software Engineering, Or-
lando, Florida, USA, May 2002, pp. 467-477.

11. B. Korel and J. Rilling, “Application of dynamic slicing in program debugging”, Automated
and Algorithmic Debugging, pages 43-58, 1997.

12. K. R. M. Leino, J. B. Saxe and R. Stata, “Checking Java programs via guarded commands”,
Compaq SRC Technical Note # 1999-002, Palo Alto, CA, 1999.

13. K. R. M. Leino, T. Millstein, and J. B. Saxe. “Generating error traces from verification-
condition counterexamples”. http://research.microsoft.com/ leino/papers.html.

14. R. Lencevicius, “On-the-fly query-based debugging with examples”, Automated and Algo-
rithmic Debugging, 2000.

15. J. R. Lyle and M. Weiser, “Automatic program bug location by program slicing”, Proceedings
of the 2nd International Conference on Computers and Applications, pages 877-882, 1987.

16. J. W. Nimmer and M. D. Ernst. “Invariant inference for static checking”, Proceedings of
the ACM/SIGSOFT Symposium on the Foundations of Software Engineering, pages 11-20,
Charleston, SC, November 2002.

17. M. Renieris and S. Reiss, “Fault localization with nearest neighbor queries”, Proceedings of
the 18th IEEE International Conference on Automated Software Engineering, October 2003.

18. E. Y. Shapiro, “Algorithmic Program Debugging”, The MIT Press, 1983.
19. A. Zeller, “Isolating cause-effect chains from computer programs”, Proceedings of the

ACM/SIGSOFT International Symposium on Foundations of Software Engineering, 2002.

