Compressing Dynamic Data Structures*

Haifeng He (hehf@cs.arizona.edu)

Computer Science Department

Problem

- Physical memory is limited.
- Reduce memory consumption by compressing dynamic data structures

Program memory footprint

Opportunity: Most scalar variables do not require a machine word to store values.**

Compression and Decompression

Primitives: given a compression scheme S

- test_compress(S, v), if v can be compressed with S
- compress(S, v), does the actual compression
- decompress(S, v), decompresses v with S

What if an incompressible value is encountered? Expand compressed data object with additional memory space.

Source code transformation

Original	Transformed
struct S {int d; char *p;};	struct S'{char cdata[size];};
$s \rightarrow d = v$;	$compress_store(s \rightarrow cdata, fid, v)$
$v = s \rightarrow d;$	$v = compress_load(s \rightarrow cdata, fid)$

fid is a unique number assigned for each compressed structure field.

Data structures compression

prefix

width.

Small set {1,5,7, 2 bits Value table 0x7ffffff} (index) Choose the compression scheme which achieves the smallest bit

(offset)

* This work was supported in part by NSF Grants CNS-0410918 and CNS-0615347.

Experimental results

Slab allocators in Linux kernel 2.6.19

Static impact	Struct Name	OrigSize	CompSize	Reduce
	ext2_inode_info	372	276	25.8%
	inode	264	212	19.7%
	dentry	124	80	35.5%

Why these structures? These structures consumes about 80% of the total size of memory spaces in the slab allocators.

Dynamic impact

Reduces the total memory consumption of the slab allocators by 16% when running MediaBench suite with minimal increases in execution time (1.6%).

Related work

- Ali-Reza et al.: Improving 64-bit java IPF performance by compressing – compressing 64-bit pointers.
- Zhang and Gupta: Data compression transformations for dynamically allocated data structures – hardware assisted approach.
- Cooprider and Regehr: Offline compression for on-chip **RAM** – compressing static allocated objects.

^{**} Brooks and Martonosi showed that over half of the integer operations in SPECint95 can be represented with 16 bits or less.