
86 Int. J. High Performance Computing and Networking, Vol. 13, No. 1, 2019 

Copyright © 2019 Inderscience Enterprises Ltd. 

Using the loop chain abstraction to schedule across 
loops in existing code 

Ian J. Bertolacci* and Michelle Mills Strout 
The University of Arizona, 
Tucson, AZ 85721, USA 
Email: ianbertolacci@cs.arizona.edu 
Email: mstrout@cs.arizona.edu 
*Corresponding author 

Jordan Riley and Stephen M.J. Guzik 
Department of Mechanical Engineering, 
Colorado State University, 
1374 Campus Delivery, 
Fort Collins, CO 80523, USA 
Email: jriley2@rams.colostate.edu 
Email: stephen.guzik@colostate.edu 

Eddie C. Davis and Catherine Olschanowsky 
Boise State University, 
1910 University Drive, 
Boise, ID 83725, USA 
Email: eddiedavis@boisestate.edu 
Email: catherineolschan@boisestate.edu 

Abstract: Exposing opportunities for parallelisation while explicitly managing data locality is 
the primary challenge to porting and optimising computational science simulation codes to 
improve performance. OpenMP provides mechanisms for expressing parallelism, but it remains 
the programmer’s responsibility to group computations to improve data locality. The loop chain 
abstraction, where a summary of data access patterns is included as pragmas associated with 
parallel loops, provides compilers with sufficient information to automate the parallelism versus 
data locality trade-off. We present the syntax and semantics of loop chain pragmas for indicating 
information about loops belonging to the loop chain and specification of a high-level schedule for 
the loop chain. We show example usage of the pragmas, detail attempts to automate the 
transformation of a legacy scientific code written with specific language constraints to loop chain 
codes, describe the compiler implementation for loop chain pragmas, and exhibit performance 
results for a computational fluid dynamics benchmark. 
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1 Introduction 

Many large scientific applications expose parallelism at a 
shared memory level using a data parallel paradigm. The 
applications are ‘modularised’ into a series of parallel and 
reduction loops. Several programming models, languages, 
and abstractions expose parallelism in this manner including 
OpenMP, OpenCL, and OpenACC. The problem is that 
exploiting all possible parallelism without regard to data 
locality leads to insufficient arithmetic intensity (i.e., the 
ratio of computation to memory accesses) and excessive 
memory traffic, resulting in poor performance and lack of 
parallel scaling. This paper presents a mechanism to expose 
and exploit both parallelism and data locality in a series of 
data parallel loops. 

The main limitations of previous work for expressing 
data locality are that: 

1 the programmer is responsible for aggregating 
computations into tasks 

2 tasks are limited to groupings of iterations within a 
single loop or user-defined functions 

3 the programmer has to rewrite full computations in 
another programming model. 

The principal advantage of the loop chain abstraction 
presented here is that it depends on inserting pragmas, a 
familiar mechanism, and they can be added to legacy  
 
 

applications, meaning that only the high-level loop chain 
annotations need to be adjusted for efficient execution on 
various hardware configurations. 

The loop chain abstraction represents a sequence of 
parallel and/or reduction loops that explicitly share data 
(Krieger et al., 2013). Figure 1 illustrates an example loop 
chain with two loop nests and the pragmas we propose in 
this paper. Such coding patterns are often found in stencil 
codes and other kinds of buffered producer/consumer codes. 
The loop chain abstraction requires that each loop in the 
chain is parallel or a reduction (typically an array 
reduction), has regular, non-sparse, domain, and static 
access functions that indicate how each iteration accesses 
data spaces. With these requirements, the loop chain 
abstraction can be used to derive a partially ordered set of 
iterations that makes scheduling and determining data 
distributions across loops possible for a compiler and/or 
run-time system. The flexibility to schedule across loops 
enables better management of the data locality and 
parallelism trade-off. 

Providing data access information that enables the 
compiler to determine dependences and high-level schedule 
information in pragmas enables domain scientists to 
incrementally parallelise large production codes. The 
pragmas specify the loop chain abstraction and schedules 
for loop chains, which were developed to navigate the  
trade-off between data locality and parallelism while 
requiring minimal extra information from programmers. 
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Figure 1 Example of annotated source code (schedule omitted) 

#pragma omplc loopchain schedule(…) 
{ 
 #pragma omplc for domain (lb:ub) \ 
  with (i) \ 
   write A {(i)}, \ 
   read B {(i–1), (i), (i+1)} 
 for ( int i = lb ; i <= ub; i += 1 ) 
  A[ i ] = (B[i–1] + B[i] + B[i+1]) 
 #pragma omplc for domain (lb:ub) \ 
  with (i) \ 
   write A {(i)}, \ 
   read A {(i)} 
 for ( int i = lb; i <= ub; i += 1 ) 
  A[i] = A[i] * (1.0/3.0); 
} 

The current implementation focuses on expressing 
schedules that balance data locality and parallelism for 
shared-memory multicore architectures. However, the 
information provided could be used to automate high-level 
schedule specifications beneficial to accelerators as well. 
For example, Grosser et al. (2013) demonstrated the 
performance advantages of split tiling for stencil codes on 
GPUs. Additionally, they presented a mechanism for 
automatic code generation of split tiling code. While 
currently beyond the scope of this work, this is precisely the 
type of transformation that is a candidate for inclusion in 
loop chains. 

Manual implementation of the transformations has 
demonstrated their potential impact. In a previous paper, we 
manually applied the loop chain abstraction and explored 
the trade-offs between parallelism and data locality by 
employing different loop chain scheduling strategies 
(Olschanowsky et al., 2014). In this paper, we use Jacobi2D 
as an illustrative example and show how many of those 
same transformations can be specified at a high level with 
the loop chain schedule pragma. For performance 
experiments, we used mini-flux-div, a stencil code 
representative of computational fluid dynamics (CFD) 
applications. 

The specific contributions of this work include: 

 a pragma grammar to specify loop chains and their 
schedules 

 an informal description of the semantics of the schedule 
commands 

 examples of how a user would annotate existing code 
with the pragmas 

 a discussion of the challenges associated with preparing 
an existing application to accommodate the loop chain 
abstraction 

 a prototype source-to-source translator that implements 
the pragmas 

 a discussion of the current limitations in the 
implementation. 

Our preliminary results indicate that this programming 
abstraction can serve as a useful tool for developers and 
maintainers seeking to improve the performance of their 
application without having to overhaul their code. 

2 Loop chain syntax and semantics 

A loop chain is comprised of a sequence of loop nests with 
no code occurring between them. The annotations around a 
loop chain describe the iteration space of each loop nest as 
an unordered integer set and the data usage patterns as a 
mapping between iterators and representative data spaces. 
The combination of the iteration spaces and data usage 
information describes a partial ordering of iterations that is 
required for correctness. 

A schedule indicates the transformations that should be 
applied to the loop chain. The application of the schedule 
takes advantage of the fact that the ordering of iterations is 
partial. The goal is to exploit any flexibility in the partial 
ordering to balance data locality and parallelism and 
improve performance. 

Figure 2 Full LoopChain directive grammar 

nest annotation  → for nest domain definition  access 
definition  

nest domain definition  → domain ( expression  : expression  
 (, expression  : expression )* ) 

access definition> → with ( id  (, id )* ) access atom  (, 
access atom )* 

access atom  → (read | write) id  
 { iterator expression  (, iterator expression )*} 

iterator expression  → ( expression  (, expression )* ) 

loopchain annotation  → loopchain schedule 
 (( schedule atom  (, schedule 

atom )*)?) 

schedule atom  → serial | parallel | wavefront 
 | fuse ((( int  (, int )*))*) 
 | tile (( int  (, int )*), 
 schedule atom , schedule atom ) 

The loop chain information is communicated via pragmas. 
Pragmas allow for incremental changes to be made to 
existing applications. Much like OpenMP pragmas they can 
be ignored by a compiler that does not support the 
optimisations. For the purpose of this paper, we use the 
pragma label omplc, indicating that the loop chain 
transformations have the potential for inclusion within the 
OpenMP standard. The syntax of a loop chain pragma is 
similar to that of OpenMP pragmas. 

#pragma omplc directive-name [clause [[ , ]clause]…] 
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See Figure 2 for the full loop chain directive grammar. 
There are two directives in this grammar: for and loopchain. 
The following sections describe each of the directives and 
clauses included in the loop chain abstraction as well as 
their semantics. 

2.1 The for directive: domains and access patterns 

The domain and access pattern annotations describe the 
iteration space of each loop nest and the accesses to data 
made within that space. These annotations only describe the 
behaviour of the corresponding code; they do not modify or 
operate on the nests that they describe. 

A domain is specified at the top level of each loop nest 
in the chain. The domains among loop nests within the same 
loop chain must share dimensionality, but do not need to 
share bounds. Note that the domains specified are the 
domains that participate in the scheduling transformations 
specified for the loop chain. Any loops inner to that domain 
are treated as a single statement with respect to scheduling. 
In other words, it is possible for a sequence of loop nests 
that vary in dimensionality to be included in a loop chain, 
because it is the domain expressed in the directive that 
determines the dimensions considered for scheduling, not 
the code itself (see Figure 3 for an example of this). 

Figure 3 An example of a sequence of loop nests of unequal 
depth and unknown access patterns that could be 
defined and optimised with the loop chain abstraction 

for (int i = lb; i <= ub; ++i){ 
 A[i] = (B[i–1] + B[i] + B[i+1])*(1.0/3.0); 
} 
for (int i = lb; i <= ub; ++i){ 
 for (int j = lb; j <= ub; ++j){ 
  foo(A, B, i, j) ; 
 } 
} 

The domain clause within the for clause of the pragma takes 
the form: 

domain (d1_lb:d1_ub,d2_lb...) 

The domain of a loop nest is specified as a list of inclusive 
ranges representing the lower and upper bound of each 
dimension of the loop nest. An N dimension loop nest 
defined by a k dimension domain (where k ≤ N), indicates 
that the k outer loops will participate in the loop chain 
schedule and the N – k inner loops of the nest will be treated 
as a single statement. 

While a loop nest domain can often be retrieved through 
program analysis, it may be the case that the syntax of the 
loop nest does not reflect the domain of interest for loop 
chain scheduling. For example, the inner most loop(s) may 
be considered to be the body of the outer most loop(s), such 
as when iterating within the components of an array 
structure. This is common in computation fluid dynamics 

codes, where various physical components are stored at 
each mesh point in an array. 

Each loop nest’s data access pattern is expressed as a 
mapping between the iteration space and the accesses into 
abstract data space(s). The map can either be expressed as a 
read or a write access, depending on the action taken in the 
code. The data access pattern specification occurs after the 
domain specification leading with the keyword with 
followed by an ordered list of iterators: outer loop to inner 
loop. The iterator names do not necessarily have to match 
the actual loop iterators used in the loop nest. 

Data space names do not have to match any actual 
variable names and can be used to aggregate and model 
accesses to a number of arrays. The data access clause takes 
the following form, where f and g are expressions using the 
available loop iterators: 

with (i,j,…) read ID{(f(i,j,…)), 
 (g(i,j,…)),…} 
 read ID2{…} 
 write ID3{…} 
 … 

In the example in Figure 3, the access pattern for the first 
loop states that the iteration i writes to the data space A 
using i and that it reads from the data space B using i – 1, i, 
and i + 1. In this example, the access pattern in the first loop 
nest is obvious. However, the access pattern in the second 
loop nest is obfuscated with a function call. The with 
directive enables a programmer to declaratively indicate 
how data is being accessed in another function. Another 
example where program analysis would have difficulties 
analysing access patterns of interest is the following: 

double* ptr_1 = buffer + mk_offset(...); 

double* ptr_2 = buffer + mk_offset(...); 

Without precise inter-procedural analysis (and in some 
cases even with it), it is impossible at compile time to know 
if ptr_1 and ptr_2 are the same or might result in 
overlapping accesses. For this reason, we have the 
programmer specify the access pattern explicitly. 

2.2 The loopchain directive: scheduling loop chains 

The loopchain directive, in addition to indicating the loop 
chain, communicates the scheduling transformations to be 
applied to the chain as a whole. This directive is placed at 
the beginning of the encapsulating scope. Currently, the 
schedule is specified by the programmer, but it has been 
designed so it can be used by an autotuner, compiler, or 
other automated tool when that capability is available. 

Figure 1 shows an annotated input to the  
source-to-source translator. If the schedule command for 
Figure 1 was schedule(fuse()) then the resulting 
code would be Figure 4. If the schedule command  
was schedule(fuse(), tile((10), parallel, 
serial)), then the resulting code would be Figure 5. 
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Figure 4 Expected form of transformed code from Figure 1 after 
loop fusion (schedule(fuse())) 

for (int i = lb; i <= ub; i += 1){ 
 A[i] = (B[i–1] + B[i] + B[i+1]); 
 A[i] = A[i] * (1.0/3.0); 
} 

Figure 5 Expected form of transformed code from Figure 1 after 
loop fusion and tiling by 10 (schedule(fuse(), tile((10), 
parallel, serial))) 

#pragma omp parallel for 
for (int tile = floord(lb, 10); tile <= floord(ub, 10);  
tile = tile + 1 ){ 
 for (int i = max(10 * tile, lb); i <= min(10 * tile + 9, ub); i = 

i + 1){ 
  A[i] = B[i–1] + B[i] + B[i+1]; 
  A[i] = A[i] * (1.0/3.0); 
 } 
} 

Note: floord is a C macro that does integer integer 
division. 

A limited set of schedules are included in the design to 
balance the trade-off between ease-of-use by the 
programmer and potential performance gains. The initial set 
of available schedules is built prioritising those that  
have demonstrated performance impacts on scientific 
applications. The transformations performed on an 
application benchmark, mini-flux-div (Olschanowsky et al., 
2014), motivated our choice of loop transformations. 
Transformations that are currently implemented in our 
prototype tools are fuse and tile. Additional transformations 
are currently under development. The following is a short 
description of each transformation specified by a schedule 
command. 

2.2.1 Syntax and semantics of schedule operations 

Currently there are five schedule operations included in the 
directive grammar: serial, parallel, fuse, wavefront, and tile. 
Syntactically, the schedule directive is a list of these 
schedule operations in the order they are to be applied 
(Section 2.2). The formal grammar for this portion of the 
directive can be found in the loopchain annotation 
production in Figure 2. 

 fuse: 1 1 2 2
1 1([( , ..., ), ( , ..., )...]).d dfuse s s s s  All of the  

loops in the loop chain are fused using a loop fusion 
transformation to the depth indicated by their domains. 
The results are a single loop nest in the loop chain. 
How much shifting each loop requires will be 
determined based on the data dependences induced  
by the data accesses and constrained by the loop 
domains unless the programmer explicitly provides the 
optional shifting information (e.g., 1 1

1([( , ..., ),dfuse s s  
2 2
1( , ..., )...]).ds s  The value n

ds  tells the translator how 

far to shift the loop at depth d for loop nest n. The 
original order of the loops within the loop chain is the 
order of statements in the fused loop body. 

 tile: tile((s1, …, sD), <outer schedule>, <inner 
schedule>) indicates that all the loop nests in the loop 
chain should be tiled. Specifically, the D outermost 
loops for each loop nest should be rectangularly tiled 
using a tile of size (s1, …, sD), where sd indicates the 
tile size in dimension d of the loop nest. The <outer 
schedule> and <inner schedule> are the schedules over 
the tiles and within the tiles. The full grammar for this 
operation can be found in the schedule atom production 
in Figure 2. 

Currently, only constant-sized tiles are supported. 
Providing the schedule command tile(16) will  
result in tiling the outer loop of a loop nest with  
16 iterations in each tile. Specifying the schedule 
command tile(16, 16, 16) will create cubic tiles of size 
163. The dimensionality of the tiling specified cannot 
exceed that of the domain provided in the for loop 
pragmas in the loop nest. 

 wavefront: This schedule command when at the 
outermost level of the schedule annotation indicates 
that all the loop nests in the loop chain should use a 
wavefront parallelisation strategy. A wavefront strategy 
turns a loop nest into one with an outer serial loop (no 
change) and then D – 1 inner parallel loops. The D – 1 
inner parallel loops will be skewed enough to make the 
parallelism legal. The wavefront command can also be 
used as the schedule over and/or within tiles. 

 serial: Typically only used in the context of tiling, the 
serial directive indicates that either the outer loop over 
tiles or within tiles should not be parallelised. 

 parallel: indicates that the outer loop of all loop nests in 
the loop chain should be parallelised. Also used in a tile 
schedule to add parallelism over or within tiles. 

2.3 Automatic determination of required shift 
distances 

Stencil computations are common in scientific applications 
and cannot be directly fused. Fusing two stencil 
computations that share data in a producer/consumer pattern 
requires shifting at least one of the iteration spaces to 
preserve data dependences. 

This can be observed in the Jacobi benchmark code in 
Figure 6. Figure 7 shows 16 iterations of loop 1 and of  
loop 2. Each iteration in loop 2 depends on its neighbouring 
iterations from loop 1. A direct fuse of these loops leads to 
an illegal dependence cycle between iterations in the fused 
loop. However, a shift of loop 2 in both iterator directions 
results in a legal loop fusion and an opportunity to expose 
wavefront parallelism. 
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Figure 6 A Jacobi2D benchmark that uses ping pong storage is 
an example of a sequence of loops that could be 
defined and optimised with the loop chain abstraction 

for (int t = 1; t <= T/2 ; t += 2){ 
 for (int i = 1; i <= N; i++){ 
  for (int j = 1; j <= N; j++){ 
   A[i][j] = (B[i–1][j] + B[i][j] + B[i+1][j] 
 + B[i][j–1] + B[i][j+1])*1/5; 
  } 
 } 
 for (int i =1; i <= N; i++){ 
  for (int j = 1; j <= N; j++){ 
   B[i][j] = (A[i–1][j] + A[i][j] + A[i+1][j] 
 + A[i][j–1] + A[i][j+1])*1/5; 
  } 
 } 
} 

In this section, we present an algorithm for determining the 
required shifting for a loop chain to make a fuse legal. The 
challenge is to automatically identify the shift extent for 
each dimension of each loop nest in the loop chain. In this 
example, the stencil depth is the same for both loop nests 
and is 1 and this happens to lead to a shift of size 1 in each 
dimension for loop 2. However, in some scientific codes, 
the stencil depth varies among loops. Solving this challenge 
is one of the motivations for including the data access 
information in the with clause of the for directive. 

The process for determining the shifts requires 
examining the data accesses of each loop nest compared 
with all of the loop nests that come before it in the loop 
chain. Each loop nest has associated with it the read and 
write patterns for each logical data space expressed using 
the access pattern grammar shown in Figure 2. Using this 
information, the shifts required to satisfy the dependences of 
each dimension of each loop nest can be computed as an 
integer linear programming (ILP) problem. 

 

Figure 7 Data dependences in Jacobi2D require a shift before fuse (see online version for colours) 

 
Notes: The original iteration order (on the left) shows the data dependences between the first and second loop nests. The centre 

iteration schedule is erroneous because there are data dependences that are not satisfied. The final ordering includes shifts 
of 1 in each direction and is correct. 
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We specify the ILP problem as a solution of the shift extents 
Sld, where l indicates the position of the loop nest in the 
chain and d indicates the dimension of the loop nest. The 
objective function the ILP solver will minimise is the 
summation of all the shift extents, 

,
.ldl d

S  To 

synthesise the constraints of the ILP problem, we first form 
a weighted, directed multigraph. In this graph, each node 
represents some shift Sld. If there are two loops x and y 
where x < y, who share a dataspace w that is either read in x 
and written in y, or written in x and read in y, or written in x 
and again written in y, then there exists an edge from Sxd to 
Syd in the graph where the weight is difference between two 
accesses in terms of their constant offsets, (iyd + cyd) –  
(ixd + cxd) = cyd – cxd. There is a separate multigraph for each 
dataspace dimension. A legality constraint is formed with 
respect to Sxd and Syd, such that maxWeight(Sxd, Syd) =  
Syd – Sxd, where maxWeight(a, b) is the maximum weight 
between the nodes a and b. Additionally, all shift extents are 
individually constrained to be greater than or equal to zero, 

l, d, 0 ≤ Sld. 
From the Jacobi-2D example in Figure 6, we can 

produce the multigraphs shown in Figure 8 and from it the 
constraints: 1 = S2,1 – S1,1, 1 = S2,2 – S1,2, and 0 ≤ S1,1  0 ≤ 
S1,2  0 ≤ S2,1  0 ≤ S2,2. Our ILP solver produces the shifts 
S1,1 = 0, S1,2 = 0, S2,1 = 1, and S2,2 = 1. 

Figure 8 Graph forming the constraints of the ILP problem 
solving for shift extents to perform fusion 

 

In the situation where a tile schedule has already been 
applied, we convert the original dependences between 
individual iterations into dependences between tiles by 
applying the function 

1 if 0
( ) 0 if 0

1 if 0

x
f x x

x
 

to all the weights in the graph. The constraints for the ILP 
problem can be synthesised as usual. We make the 
assumption that no access id + cd will have a constant cd 
greater than the tile size in that dimension. This forces 
dependencies to be at most between adjacent tiles. 

2.4 Determining a skew factor for wavefront 
parallelism 

After loops have been shifted and fused, dependences that 
once went between loops will now be carried by loops in the 
fused loop nest. This may have eliminated some parallelism. 
An example of this can be seen in Figure 7, where after 
shifting and fusing, both dimensions of the new loop nest 
carry a dependence thus preventing parallelisation. By 
skewing the loop nest, we can force the outermost loop to 
carry the loop dependencies and expose parallelism in the 
inner dimensions. 

To review, a dimension d of a loop nest carries a 
dependence when the first non-zero in a dependence vector 
(k1, …, kD) occurs in that dimension. After a shift by (S1, …, 
S), the dependences are shifted to create the new 
dependence vector (k1 + S1, …, kD + SD). After the shift has 
been applied the fused loop is permutable and therefore all 
of the entries in the dependence vectors are non-negative, 

d, kd + Sd ≥ 0. Additionally, since we are only considering 
dependence vectors that cause one of the loops to carry a 
dependence, for each dependence vector at least one of the 
entries in the dependence vector will be at least one  
non-zero, d, kd + Sd > 0. 

A conservative solution for skewing would be to skew i1 
by all id for d > 1, using the transformation map: (i1, …, iD) 

→ 21
, , ..., .

D
d Dd

i i i  Applying this transformation to 

each of the dependence vectors results in dependence 
vectors of the form ((k1 + S1) + (k2 + S2) + … + (kD + SD), k2 
+ S2, …, kD + SD). Since at least one of the subexpressions 
in the first dimension of the dependence vectors is non-zero, 
the outermost loop will now carry all of the dependences. 

In the Jacobi 2D example from Figure 6, the dependence 
vectors in the illegal fuse are {(–1, 0), (0, –1), (0, 0), (0, 1), 
(1, 0)}. After the (1, 1) shift has been applied, the new, legal 
dependence vectors are {(0, 1), (1, 0), (1, 1), (1, 2), (2, 1)}. 
The dependence vectors {(1, 0), (1, 1), (1, 2), (2, 1)} are 
carried by the outer loop (dimension 1), and the dependence 
vector (0, 1) is carried by the inner loop (dimension 2). To 
skew for wavefront parallelism, the mapping would be  
(i1, i2) → (i1 + i2, i2). This changes the dependence vectors 
to be {(1, 1), (1, 0), (2, 1), (3, 2), (3, 1)}. The outer loop 
(dimension 1) now carries all the dependencies and so the 
inner dimensions of the loop can be parallelised. 

2.5 Ordering and nesting of the scheduling 
commands 

The scheduling commands can be listed in order or nested 
in a tiling command. A command in the list, not nested in 
another command, affects all loop nests in the loop chain. 
For example, the fusion command turns a list of N loop 
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nests into a list with only a single loop nest in it. Any 
commands after fusion will be operating on that new list 
with only a single item. This is the conceptual organisation. 
To handle shifts and/or loop nest domains in general not 
lining up, there will be extra edge loops in the code that is 
generated. 

Tiling adds outer loops to the loop nest domains that 
iterate over tiles and then modifies the loop nest specified 
domains so that they iterate within a single tile. The tiles 
will cover the original loop domain for the loop nest. 

Thus, tiling splits each loop nest domain into an outer 
domain over tiles and an inner domain over the points 
within a single tile. Each of those domains can be scheduled 
with any of the scheduling commands excluding fusion. 
Fusion over a single domain does not apply. Fusion is only 
relevant on a loop chain where there is a list of loop nest 
outer domains. 

Figures 9 and 10 illustrate the impact ordering have in 
the schedule. In Figure 9, fusion happens before tiling thus 
resulting in a single loop nest that has been tiled. In  
Figure 10, tiling is specified before fusion thus leading to 
only the tile loops being fused. 

Figure 9 Original loops with loop chain schedule and 
corresponding scheduled loops 

#pragma omplc loopchain schedule(fuse (), tile ((3, 4), serial, 
serial)) 
{ 
 #pragma omplc for domain(lb:ub, lb:ub) … 
 for i1 
  for i2 
   loopbody_1() 
 #pragma omplc for domain(lb:ub, lb:ub) … 
 for i1p 
  for i2p 
   loopbody_2() 
} 
–––––––––––––––––––––––Result––––––––––––––––––––––– 
for t1 
 for t2 
  for i1 
   for i2 
    loopbody_1() 
    loopbody_2() 

3 Legacy code preparation for loop chaining 

Chombo (Adams et al., 2014) is a library for solving  
partial differential equations on rectilinear grids  
with adaptive-mesh-refinement (AMR). Solutions are 
implemented on Cartesian grids and exhibit many stencil 
computations. Applications that use Chombo include land 
ice sheet modelling, shallow water flows, plasma 
simulations, Navier-Stokes solvers, and combustion 

modelling. Block-structured AMR is used to locally refine 
the mesh, improving accuracy near strong gradients and 
reducing memory and run time. The block-structured mesh 
provides many nested loops with well-defined domains that 
would be candidates for loop chains. However, like many 
legacy applications, the loop chain abstraction can not be 
directly applied to Chombo applications. In this section, 
automatic transformation of a legacy Chombo application to 
satisfy loop chaining constraints is presented. Impressive 
results are obtained, but the translator proved to be 
extremely brittle. Overall, the cost of maintaining the 
translator may outweigh rewriting the application in a 
domain-specific language more amenable to loop chaining. 

Figure 10 Original loops with loop chain schedule and 
corresponding scheduled loops 

#pragma omplc loopchain schedule(tile ((3, 4), serial, serial), 
fuse()) 
{ # 
pragma omplc for domain(lb:ub, lb:ub) … 
 for i1 
  for i2 
   loopbody_1() 
#pragma omplc for domain(lb:ub, lb:ub) … 
 for i1p 
  for i2p 
   loopbody_2() 
} 
–––––––––––––––––––––––Result––––––––––––––––––––––– 
for t1 
 for t2 
  for i1 
   for i2 
    loopbody_1() 
  for i1p 
   for i2p 
    loopbody_2() 

Note: This time the tiling is done before the fuse. 

3.1 Preparing a Chombo application for loop 
chaining 

Existing legacy applications in Chombo often have loops 
sunken into Fortran functions, various code snippets 
between loop nests, and a significant amount of conditional 
code within the loop to handle boundary conditions. While 
there are countless opportunities for loop chaining, the 
legacy applications need to be transformed in preparation 
for incorporating the loop chaining abstraction. A typical set 
of transformations and the challenges associated with 
automating them are presented in an application  
called Chord, a fourth-order finite volume compressible 
Navier-Stokes solver with adaptive-mesh refinement  
and combustion. Use of the library implies some  
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domain-specific knowledge that can be used to help with the 
transformations. 

Chord is written with the Chombo framework and 
follows a consistent coding pattern common to Chombo 
applications. The higher-level data structures are written in 
C++, and Fortran subroutines are called to iterate over 
rectangular portions of the domain, called boxes, and 
perform mathematical calculations, often in the form of 
stencils. The targeted loops of the loop chain are the loops 
iterating over these boxes. Therefore, the code targeted for 
transformation into a loop chain could span several calls to 
Fortran subroutines. 

A source-to-source translator was developed that 
automates the required transformations using the  
ROSE compiler framework (Quinlan and Liao, 2011). 
Transformations required include: translating Fortran 
subroutines to C, in-lining function calls, relocating code 
that occurs between loop nests, and control flow 
consolidation. The original code is annotated with the 
required loop chain directives and an additional set of helper 
directives that are specific to the code preparation translator. 
The transformations are described below along with the 
challenges associated with their implementation. 

3.2 Fortran to C translation 

The majority of the compute intensive code in Chombo 
applications is written in dimension-independent Chombo 
Fortran to gain the efficiency of Fortran multi-dimensional 
arrays. This is translated with Perl to dimension-dependent 
Fortran, i.e., the number of spatial dimensions is selected at 
compile time. The contents of the Fortran file are translated 
to C using an existing Fortran to C translation tool 
developed with the Rose compiler. To accomplish this while 
keeping a valid AST, the translator creates a child process to 
translate the Fortran to C. The parent then parses theC file 
into its AST to have access to the functions. The challenge 
with this step is not the language translation, but locating 
the relevant Fortran code. 

Figure 11 This is example pseudocode of the C++ code that 
needs to be prepared for loop chaining 

#pragma pre-lc begin file (filename) schedule(schedule type) 
#pragma pre-lc inline 
 call to a Fortran subroutine 
 statements that are not part of the loop chain 
#pragma pre-lc inline 
 call to a Fortran subroutine 
#pragma pre-lc end 

Recall that the calling code is written in C++. This 
necessarily means that the Fortran code does not exist in the 
same file as the driving code. During a typical build, the 
Fortran and C++ object code are combined during the 
linking phase. During compilation, where the code is 
transformed, there is no access to Fortran. Figure 11 shows 

the pre-lc annotations used by the ‘pre-loopchain’ tool to 
indicate where the Fortran code is located. 

The need to indicate the location of the Fortran file is 
the other limitation of this approach. This places an extra 
burden on the developer and, perhaps more problematic, 
introduces an opportunity for failure if the code is refactored 
and the Fortran code is moved. 

3.3 Inlining 

Once the contents of the Fortran code have been translated 
into C, the function calls are replaced with inlined functions. 
The Rose compiler framework automates this step. 
However, several steps are taken to modify the inlined 
block. Some unnecessary variables declared as part of the 
inlining are replaced. The inlined blocks are flattened to get 
the loops from multiple function calls into the same block. 
Therefore, any variable declarations that are not removed 
get a unique name to avoid naming conflicts. The renamed 
variables include the variables referenced in the domain 
directive, and the pragma has to be modified to use the new 
names. There is a problematic side effect involving the 
creation of the data access portion of the loop chain 
directive. The loop chain loop directives are included in the 
definition of the Fortran subroutine. At that point, there is 
no context for naming the data spaces. The data space 
names used do not have a reference to be consistent across 
multiple Fortran subroutines. The current tool renames the 
data spaces after inlining based on data flow analysis. This 
is a challenging step and not always possible. One solution 
is to put the original pragma at the calling location rather 
than at the definition of the subroutine. This may be easier 
for the compiler infrastructure, but if a subroutine is called 
multiple times in the code it necessitates duplicating 
information. It also places the data access directives away 
from the source code it is representing. This challenge is not 
related to crossing language boundaries, but should be 
considered for all cases that may include function calls 
within a loop chain. 

3.4 Control flow consolidation 

A common pattern in Chombo Fortran applications is to 
check for boundary conditions within each function as seen 
in Figure 12 line 7. During the majority of the execution 
these conditions are false and bypassed. The programmer 
can designate the statement to be removed with a strip 
directive as shown in Figure 12 line 6. The strip 
directives are expected to be on if statements, but it is not 
necessary. The conditionals are combined with or 
operations and moved outside the loop chain to maintain 
correctness. The conditional of the if-else loop chain 
statement is replaced with this new combination of 
conditionals from the loop chain block. In the case that they 
are true, the code generated for the loop chain is bypassed 
and the original code is called instead. The structure of the 
resulting code can be seen in Figure 13. 
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Figure 12 This is example pseudocode of a Fortran subroutine 
that needs to be prepared for loop chaining 

subroutine func(parameters) 
 implicit none 
 declaration statements 
!$ pre-lc loop (loop directives) 
 loop over box 
!$ chaining pre-lc strip 
 if at boundary then 
  treat boundary 
 endif 
 return 
end 

Figure 13 An if-else statement replaces the statements between 
pre-lc pragmas with begin and end directives 

if (stripped conditionals) { 
 original statements 
} else { 
 {// loop chain block 
  prospective loop chain 
 } 
} 

Notes: If any conditionals evaluate to true, the loop chain 
is avoided. The example of Figure 12 illustrates 
conditionals that must be removed from the loop 
chain. 

3.5 Relocating intermediate code 

Any statement that is not part of the loop chain, but is still 
within the loop chain boundary must be moved. Much of 
this code includes declarations and space allocation that can 
safely be moved before the loop chain. This knowledge is 
specific to the domain-specific style of Chombo 
applications. 

Figure 14 This is the structure of source code after a pre-loop 
chain transformation 

if (stripped conditionals) { 
 original code 
} else { 
 lifted statements 
 #pragma omplc loopchain schedule(schedule type) 
 { 
  #pragma omplc for … 
  loop from inlined function 
  #pragma omplc for … 
  loop from inlined function 
 } 
} 

The statements between for loops need to be moved. With 
the functions inlined, the translator can check for 
dependences. The translator traverses the immediate 
children of the loop chain block for any statement that has 
not been designated with a loop directive. When such a 
statement is found, the statement needs to be removed  
from the loop chain block. If the statement is a pragma,  
it is removed and deleted. Otherwise the statement is 
compared to previous statements in the loop chain  
block for dependences. If there are any read-after-write, 
write-after-read, or a write-after-write dependences, the 
statement cannot be moved before the loop chain. The 
dependency checking is overly conservative; for example, 
function parameters are assumed to be read and written. An 
exception is a member functions that are assumed to not 
change the object they operate on. This is because of 
Chombo’s extensive use of access functions to pass objects 
to the Fortran subroutines. If a statement cannot be lifted, 
this loop chain can not proceed. 

After the pre-loop chain transformation has the code in a 
structure conducive for the loop chain transformation,  
the loop chain pragmas are inserted. The pragmas 
corresponding to the loops need to be treated first. The text 
for the pragma is copied from the original loop location. 

3.6 Results 

To obtain performance results, the translator was applied to 
the fourth-order PPM limiter written in Chombo and a 
simulation of shock dynamics was executed in two spatial 
dimensions with three levels of AMR. In gas dynamics 
solvers, limiters are used to suppress numerical oscillations 
near discontinuities by reducing the order of accuracy of 
interpolations in an effort to obtain a monotone solution. 
The PPM limiter features two calls to Fortran subroutines 
and each Fortran subroutine has a loop nest. The loop nests 
have a three-dimensional data domain with loops over the 
slopes, the cells in the y-direction, and the cells in the  
x-direction. The first loop nest has a read of a dataspace 
with a three-point stencil and a write to another dataspace. 
The second loop nest has reads of both the previous 
dataspaces, and each read has a five-point stencil. All of the 
stencils are written in one-dimension and then evaluated in 
both the x and y-directions. 

For the shock-dynamics case with 3 levels of adaptive 
mesh refinement, the coarsest grid is 64 × 64, and each 
AMR level has a refinement ratio of 2. The maximum box 
size is set to 32 cells per direction. The adaptive mesh 
refinement increases the number of boxes and the total 
number of cells as the simulation progresses. The AMR 
shock box case was run with three schedules for the PPM 
limiter: the original version with calls to Fortran 
subroutines, the loop chain with an empty schedule, and a 
loop chain with a fuse schedule. 

These cases were run on a single core of an Intel Xeon 
E5-2670 v2 CPU at 2.50 GHz clock frequency. The cores 
include a 32 KB L1, 256 KB L2, and 25,600 KB L3 caches. 
GCC g++ version 4.9.2 was used to compile all cases with 
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the -O2, -ftree-vectorize, and -funroll-loops 
optimisation flags passed to the compiler. 

The performance results are given in Table 1. The 
timings are the total time the simulation was in the PPM 
limiter function for each AMR level. Converting the 
original code into a loop chain with an empty schedule 
reduced the total time in the PPM limiter. Fusing the loop 
nests further reduced the time for an overall reduction of 
approximately 10%. 

Table 1 The total time spent in the PPM limiter on each AMR 
level for different schedules is shown in seconds 

 Level 3 Level 2 Level 1 

Original 7.46 2.27 0.57 
No schedule 6.89 2.19 0.52 
Fuse 6.66 2.08 0.5 

4 Loop chain source-to-source translator 
infrastructure 

This section summarises how we translate C code annotated 
with loop chain pragmas into C code that has been 
transformed as specified in the loop chain pragma schedule. 
The key contributions of our work are the loop chain 
intermediate representation and the approach for converting 
loop chain pragma schedule commands into affine loop 
transformations. We first give an overview of the loop chain 
translation pass, and then present the approach for 

composing loop chain scheduling commands, and how it is 
enabled by the LoopChainIR. 

Two main components comprise the code 
transformation infrastructure. The first, LoopChainIR, is an 
internal representation specifically designed to represent 
and support loop chain transformation. The second is a 
prototype implementation of a transformation pass written 
in the Rose compiler framework (Quinlan and Liao, 2011) 
that utilises the LoopChain directives and LoopChainIR to 
perform loop chain transformations. The transformation has 
been designed as a single, discrete pass that could be used in 
conjunction with other transformation passes within a 
compiler. 

4.1 Loop chain transformation pass 

The transformation pass is implemented as a visitor in the 
Rose framework and performs the actions required to go 
from loopchain directives to transformed and integrated 
code. The call to transform source code based on loop chain 
pragmas can be inserted at any point during the optimisation 
stage of compilation. The transformation results in a valid 
AST and, therefore, can be followed by additional 
transformations if desired. Figure 15 shows a larger 
overview of process from frontend to backend. Figure 16 
gives an overview of the LoopChain transformation process 
and the flow of different ASTs and placement of various 
components. The steps are numbered here to indicate their 
relationship to Figure 16. 

Figure 15 A high-level overview of the usage scenario of this prototype infrastructure 

 
Note: The loop chaining pass is designed to fit seamlessly into the optimisation pipeline. 

Figure 16 Overview of the process within the LoopChain transformation pass 
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The first step (1) is to parse the loopchain directives. 
Parsing the nest annotation portion of the grammar 
produces a series of LoopChainIR objects representing loop 
nests and their domains, with associated iterator symbols 
and loop bodies. Parsing the loopchain annotation 
portion of the grammar collects those loop nests into a list, 
ordered by their position within the chain. The next step (2) 
is to take the list of loop nests and the scheduling directives 
and generate code. Once the scheduling directives are 
brought together with the entire loop chain, a series of 
LoopChainIR transformation objects are created to 
implement each of the scheduling directives. These 
transformation objects create functions that, along with 
representations of the loop nests, are passed to the 
polyhedral code generation tool to generate the transformed 
code. At this point, our code generator can generate its C 
AST representing the transformed loop chain (3). 

The last step is to take that AST, convert it into Rose’s 
Sage AST (4) and inject it back into the source AST (5). 
Importantly, the loop bodies from the original code must be 
injected into the bodies of the generated code, and iterator 
symbols from the original code matched to the iterators in 
the generated loop code. 

4.2 Forming affine transformations from scheduling 
directives 

LoopChainIR utilises integer set library (ISL) (Verdoolaege, 
2010, 2016) to perform code transformation and  
code generation. To accomplish the transformations, 
LoopChainIR needs to provide ISL with representations of 
loop nests’ initial iteration space, and the transformation 
functions that will be applied. 

Iteration spaces are represented as sets of integer tuples, 
where each tuple is a single iteration of the whole loop nest. 
Each position in the tuple is a dimension of the loop nest, 
and the values are constrained by the loop iterator 
constraints. For example, the iteration space of the first loop 
nest from Figure 6 is {[i, j] | 1 ≤ i ≤ N  1 ≤ j ≤ N}. When 
code is generated to represent an iteration space, it is 
generated so that the sequence of iterations the code 
produces preserve the lexicographic ordering of the iteration 
space. Iteration [i1, i2, …, iD] is lexicographically before 
iteration [j1, j2, …, jD] if (i1 < j1)  (i1 = j1  i2 < j2)  …  
(i1 = j1  i2 = j2  …,  iD < jD) (where  represents a 
Boolean ‘or’ and ^ represents Boolean ‘and’). 

For ISL, LoopChainIR provides the initial iteration 
spaces (or domains) as strings. For example, the strings 
provided to ISL to represent the nests of Figure 6 are: 

[N]->{ statement_1[i,j] : 1 <= i <= N and 
1 <= j <= N }; 

[N]->{ statement_2[i,j] : 1 <= i <= N and 
1 <= j <= N }; 

The syntax ‘[N]->‘ tells ISL that there exists a symbolic 
constant N in the constraints. Additionally, the tuples of 
these sets are given a statement macro that will be  
generated to the code to represent all the statements in the 

loop body. It appears similar to a function call: 
statement_0(c0,c1). 

Transformations are functions that map from one 
iteration space to another. These are also provided to ISL as 
strings. The first function that is created embeds all the 
independent iteration spaces of the loop nests into a single 
iteration space that comprises the entire loop chain: 

{ 

 statement_1[i,j] -> [loop_idx, i, j, 
stmt_idx] : 

  loop_idx = 1 and stmt_idx = 1; 

 statement_2[i,j] -> [loop_idx, i, j, 
stmt_idx] : 

  loop_idx = 2 and stmt_idx = 1; 

} 

Because of lexicographical ordering, all the iterations of the 
first nest (statement_1) will come before any iteration 
of the second nest (statement_2). 

After this initial transformation, the iteration space 
matches the input loop chain and new transformations can 
be applied. These transformation functions do not need to 
reference the statement macro. They only need to take in an 
iteration space of the same dimensionality as the iteration 
space output by the previous transformation function. All 
the transformation functions are then composed together by 
ISL and applied as one onto the original input iteration 
spaces. No intermediate C code is created during the 
transformation process. 

An important concept in our framework is that an 
iterator tuple is a concatenation of one or more subspaces. A 
subspace itself is a tuple of zero or more ‘variable’ iterators, 
and one ‘constant’ iterator. A variable iterator is an iterator 
whose constraints may have more than one solution (e.g., 1 
<= i <= N and 1 <= j <= N). A constant iterator is an 
iterator whose constraints have exactly one solution (e.g., 
loop_idx = 1). The constant iterator is always the last 
iterator of the subspace tuple. This constant iterator 
indicates the position of the statement within the variable 
iterators, and is how statements of fused loop bodies 
maintain their order in the new loop. 

In the running example, there are two subspaces 
[loop_idx] and [i, j, stmt_idx]. In the [loop_idx] 
subspace, there are no variable iterators, and loop_idx is 
the constant iterator. In the [i, j, stmt_idx] subspace, i 
and j are the variable iterators, and stmt_idx is the 
constant iterator. The complete iterator tuple is the 
concatenation of these two: [loop_idx] + [i, j, 
stmt_idx] = [loop_idx, i, j, stmt_idx]. 

While subspaces are not provided to ISL, they are 
tracked and used in LoopChainIR while synthesising the 
ISL transformation functions. Subspaces allow 
LoopChainIR to perform nested transformations, such as 
nested tiling. All base level transformations are synthesised 
with respect to one of the default subspaces, [loop_idx] 
or [i, j, …, stmt_idx]. A base level tiling directive (such 
as schedule(tile(…)…)) will create a transformation 
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function with respect to [i, j, …, stmt_idx], and 
produces a new tiling subspace, [t_i, t_j, …, 
t_stmt_idx]. 

For example, a 10 × 20 tiling of the running example 
would be: 

{ 

 [loop_idx, i, j, stmt_idx] -> 

  [loop_idx, t_i, t_j, t_stmt_idx, i, j, 
stmt_idx]: 

   loop_idx = 1 and t_stmt_idx = 1 and 
   T_i * 10 <= i_1 < (t_i + 1) * 10 and 
   T_j * 20 <= i_2 < (t_j + 1) * 20; 
 [loop_idx, i, j, stmt_idx] -> 
  [loop_idx, t_i, t_j, t_stmt_idx, i, j, 

stmt_idx]: 

   loop_idx != 1 and t_stmt_idx = 1 and 
   t_i = 1 and 
   t_j = 1; 
} 

Any nested transformations, in this case, over or within 
tiles, will be synthesised with respect to the appropriate 
subspace. In this case, transformations over tiles will be 
synthesised with respect to the new tiling subspace,  
[t_i, t_j, t_stmt_idx], and transformations within 
the tile will be synthesised with respect to the tiled 
subspace, [i, j, stmt_idx]. 

4.3 Loop chain intermediate representation 

LoopChainIR is a C++ library that provides abstractions, as 
classes, of loop nests, loop domains, loop chains, code 
generation ready schedules, and transformations to apply 
these schedules. This library serves to encapsulate a loop 
chain, provide developers with a way to package a loop 
chain optimisation, and provide compiler developers with a 
way to add loop chain optimisations into their optimisation 
toolbox, while also being simple and independent of any 
one compiler framework. 

Figure 17 demonstrates the simplicity of using 
LoopChainIR, building a representation of the code from 
Figure 6, and then performing the equivalent of 
schedule(fuse((0, 0), (1, 1)), tile((10, 
20), serial, serial)). The output of this demo is 
Figure 9. This code is stand alone, requiring only the 
LoopChainIR and ISL libraries, allowing it to be used by 
any compiler infrastructure. 

LoopChainIR was designed so that the task of 
describing a loop chain, and the task of transforming it, are 
largely done by different components of the library. The 
classes LoopChain, LoopNest, and RectangularDomain, are 
used to describe the loop chain. The classes schedule, 
subspace, and the transformation class hierarchy are used to 
describe transformations on the loop chain. The schedule 
class takes in a constructed LoopChain and produces the 
initial ISL iteration spaces, subspaces, and transformation 
function that are required for subsequent transformations to 

be allowed. Transformation classes themselves can be 
created separately from a schedule or from a LoopChain. 
Until it is used by the schedule class, a transformation class 
does not require any more information than the parameters 
needed to describe the transformation, such as shift factors 
and tiling extents. This decoupling allows different portions 
of a compiler to synthesise the loop chain representation, 
and the transformation representations separately. 

Figure 17 In this demonstration of LoopChainIR, the schedule 
fuse((0, 0), (1, 1)) tile((10, 15), 
serial, serial) is applied to the Jacobi code  
in Figure 6 

// Create a loop chain. LoopNests will be appended to it. 
LoopChain chain; 
 
// Lower and Upper bounds, in dimensional order. 
string lb[2] = {“1”, “1”}; 
string ub[2] = {“N”, “N”}; 
// Symbolic constants present in those bounds. 
set<string> symbols = {“N”}; 
 
// Create a loop nest from a rectangular domain those bounds 
form. 
chain.append(LoopNest(RectangularDomain(lb, ub, 2, 
symbols))); 
// Create an identical loop nest. 
chain.append(LoopNest(RectangularDomain(lb, ub, 2, 
symbols))); 
 
// LoopChain has been created, transformations can now be 
done. 
 
// Create a schedule object from that chain. 
Schedule sched(chain); 
 
// Create a shift transformation for loop 1, shifting both 
dimensions by +1 
Transformation* shift = new ShiftTransformation(1, {“1”, 
“1”}); 
 
// Fuse loops 0 and 1 together. 
Transformation* fuse = new FusionTransformation({0, 1}); 
 
// Tile both loops 
TileTransformation :: TileMap extents; 
// In LoopChainIR dimensions numbering begins at 0 
// Size of tile in dimension 0. 
extents [0] = “10”; 
// Size of tile in dimension 1. 
extents [1] = “20”; 
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Figure 17 In this demonstration of LoopChainIR, the schedule 
fuse((0, 0), (1, 1)) tile((10, 15), 
serial, serial) is applied to the Jacobi code  
in Figure 6 (continued) 

 
// In LoopChainIR loop numbering begins at 0 
// Make tile transformation for loop 0. 
Transformation* tile_0 = new TileTransformation(0, extents); 
 
// Take the transformations and apply them, in order, to the 
schedule. 
sched.apply({tile_0, tile_1, shift, fuse}); 
 
// Hand-off to ISL to perform transformations and code 
generation. 
sched.codegenToFile(“output.c”); 

Figure 18 Output found in “output.c” after running Figure 17 

for (int c1 = 0; c1 <= floord(N + 1, 10); c1 += 1){ 
 for (int c2 = 0; c2 <= (N + 1) / 20; c2 += 1){ 
  for (int c4 = max(max(1, 10 * c1), –N + 20 * c2 + 1); 
 c4 <= min(N + 1, 10 * c1 + 9); c4 += 1){ 
   for (int c5 = max(max(1 , 20 * c2), –N + c4 + 1); 
 c5 <= min(min(N + 1, 20 * c2 + 19), N + c4 – 

1); c5 += 1) { 
    if (N >= c4 &&N >= c5) 
     statement_0(c4, c5); 
    if (c4 >= 2 && c5 >= 2) 
     statement_1(c4 – 1, c5 – 1); 
   } 
  } 
 } 
} 

The schedule class does the managerial work during the 
transformation process. It keeps track of the subspaces that 
transformation classes use to help construct their 
constraints, and provides the input and output iterator tuples 
that form the rest of the function. 

5 Experimental results 

The goal of our evaluation was to verify that the translation 
tool produced correct results and that the generated source 
code obtained similar performance to a more manual 
approach. This was achieved by adding loop chain  
pragmas to an application benchmark, miniflux-div. The 
automatically generated code’s performance matched that of 
the manual transformations. Additionally, previous work  
 
 
 

demonstrated that large performance gains were achieved 
through a combination of execution schedule optimisations 
and space optimisations. The loop chain pragmas only 
enable the execution schedule optimisations. 

5.1 Application benchmark 

The application benchmark selected for this experiment was 
mini-flux-div, a partial implementation of the stencil 
computations used in the PDE solvers of CFD simulations. 
The original benchmark was developed to emulate the 
behaviours typically found in applications developed within 
the Chombo framework (Olschanowsky et al., 2014). The 
current benchmark has been modified to remove 
dependencies on Chombo, easing installation. The direct 
software dependencies have been removed, however, the 
pattern similarities were maintained. The mini-flux-div 
benchmark is available as part of the Variations on a Theme 
(Strout et al., 2017) benchmark repository. 

A finite volume method is applied to discretise the 
domains of the flux calculations. The fluid volume is 
approximated by a number of boxes, each containing cells 
arranged in the x, y, and z-directions. Each cell contains five 
component values: density, energy, and the velocities in the 
x, y, and z-directions. The flux is calculated on each face of 
each cell, with the approximate solution accumulated from 
the values of adjacent cells. A layer of ghost cells surrounds 
each box. 

The calculation is expressed as a series of nine loop 
nests. The flux is calculated in the first two loop nests of 
each group of three. In the first loop nest the calculations for 
each dimension consist of three passes, first the initial 
values of the five components are produced from previous 
results (Flux1), in the next the values are updated with the 
velocity component (Flux2), and finally, the results are 
accumulated into adjacent cells (Diff). Each of the three 
passes must iterate over each cell in all three dimensions, 
for a total of nine loop nests. The five flux components are 
calculated individually in the initial baseline program, such 
that each nest contains only three loops rather than four. No 
data dependences exist between boxes, allowing them to be 
executed in parallel using OpenMP (box level parallelism). 

The benchmark was tested over a 3D data domain, 
sweeping both the number of boxes and the number of cells 
per dimension in each box. The total cell count of 
58,720,256 is constant for each experiment. The number of 
threads was also swept from 1 to 28, i.e., the number of 
cores in the experimental machine, to evaluate the effects of 
box level parallelism. The baseline code has only box level 
parallelism, with no inner loop transformations, and 
contains a single velocity cache shared by the three 
dimensions. A full cache, one that is written only once at 
each location during execution is used in the experimental 
program to enable loop transformations, otherwise 
prohibited by data dependences. 
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Figure 19 Experimental results of the mini-flux-div micro-benchmark, (a) overall performance results (b) zoomed view of lower-right of 
plot to highlight improvements (see online version for colours) 

 
(a) 

 
(b) 

 
Table 2 Descriptions for each of the execution schedules 

presented 

Legend label Schedule Description 

Baseline Series of loops Original 
implementation with 

expanded storage 
allocation to enable 

transformations. 
Storage optimised Series of loops Original 

implementation with 
storage allocation 

reduced. 
Fuse Shifts align 

Diff operations 
Shift and fuse are 
applied to baseline 
implementation. 

Tiled 8 × 8 × 8 Fuse then tile  
Tiled 16 × 16 × 16 Fuse then tile  
Tiled 32 × 32 × 32 Fuse then tile  

The loop chain pragma was added around the loop nests 
within the primary box loop, instructing the tool to apply the 
various schedules. Additional loop chain pragmas 
specifying domain and data dependence descriptors were 
added to the nine inner loops for the three dimensions  
 

calculated. For example, the Flux1 calculation reads data 
from the previous time step, and writes to the flux cache. 
Flux2 both reads from, then writes to the cache. In the 
accumulation step (), data are read from cache, and written 
to the current time step. 

Several fused schedules are possible given the data 
dependencies and domains involved in the mini-flux-div 
benchmark. The domains of each pair of loop nests 
calculating the flux are rectangular and the same shape. 
Additionally, the data dependencies are point-to-point, 
making a direct fuse possible. The domains for the Diff 
operation are square and shifting the iteration space is 
required for correctness. The first four loop domains are 
flattened to be two-dimensional. There are two different 
legal shift-fuse configurations. We manually confirmed that 
the transformation tool produced the better performing of 
the two configurations, with all of the writes to a single data 
location contained within the same iteration and less control 
flow overhead. This is the ‘shift and fuse’ example in  
Figure 19. Three other schedules were evaluated, fused and 
tiled, with three different sets of tile dimensions, 8 × 8 × 8, 
16 × 16 × 16, and 32 × 32 × 32. The overall results are 
summarised in Figure 19(a) and the different execution 
schedules are summarised in Table 2. 
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5.2 Experimental setup 

All experiments were run on a single node of a multi-node 
cluster, R2 at Boise State University. Each node is 
composed of a dual socket, Intel Xeon E5-2680 v4 CPU at 
2.40 GHz clock frequency with 28 cores (14 per socket). 
The cores include a 32 KB L1, 256 KB L2, and 35,840 K 
L3 caches. The system contains 192GB of RAM split over 2 
NUMA domains. GCC g++ version 4.8.5 was used to 
compile all the benchmarks, with the -O4 optimisation flag 
passed to the compiler. 

5.3 Results 

The shifted and fused code generated by the loop chain tool 
outperforms the baseline code in a number of experimental 
cases as the thread (core) count increases, most notably 
when the number of cells is 32 or 64. This is an expected 
result because the increased amount of storage required for 
the baseline schedule. Figure 19(b) contains a zoomed view 
of the performance results. The three fused and tiled 
schedules did not outperform the baseline in any of the test 
cases as in previous work (Olschanowsky et al., 2014), 
because the temporary data footprints have not been 
optimised. 

The overall trend for the generated code to start out 
slower than the baseline at low core counts and close the 
gap as more cores are added is expected and worthy of 
further explanation. The baseline code has a temporary 
space optimisation that reuses the same data to 
communicate values between the producer loop nests (the 
Flux1 and Flux2 loops) and the consumer loop nest (the Diff 
loops). The generated schedules use a maximal temporary 
data scheme that will support any generated schedule. This 
translates to a 3X increase in temporary data usage. The 
baseline code was modified to include the full cache access 
pattern that shares the same memory overhead, baseline in 
Figure 19). The optimised schedules mostly outperform this 
version for higher thread counts. 

6 Related work 

The need to manage data locality and parallelism in tandem 
was first tackled by Kennedy and McKinley (1992). Their 
work focused on trading off data locality and parallelism 
within individual loop nests. In the 1990s the main issue 
was false sharing and creating enough coarse grain 
parallelism. Today’s machines demand a wider variety of 
scheduling strategies, therefore the programmer might best 
be helped by providing orthogonal abstractions for 
specifying different schedulers either manually or with an 
autotuner. 

Other approaches to balancing data locality and 
parallelism include domain-specific languages and 
compilation passes, aggregation of computation in  
tasks, and lower-level programmer-guided program 
transformation. Loop chaining differentiates itself from 
most of the previous work by removing complex tasks from 

the domain of the user. For example, task aggregation 
requires users to rewrite large portions of the code. Loop 
chaining depends on the user annotating existing code with 
summary data access information. This interface allows the 
optimising compiler to make decisions not always possible 
through data analysis. Optimisation scripting languages also 
enable programmer control over the schedule as the loop 
chain schedule commands do, however, the scripting 
interfaces are lower level and more complex to enable the 
expression of a broader range of transformations. The 
advantage of loop chaining is that it enables the programmer 
to have some control over the schedule in a loop chain while 
still hiding the complexity, thus making transformations 
across sequences of loops that share data more practical. 

6.1 Domain-specific languages and transformations 
for stencil computations 

The loop chain abstraction is most relevant to pipelines of 
stencil computations. Stencil computations are prevalent in 
image processing pipelines and in partial differential 
equation solvers. Thus there have been a number of  
domain-specific languages developed for specifying stencil 
computations (Tang et al., 2011; Christen et al., 2011; 
Henretty et al., 2013; Stone and Strout, 2013). The main 
issue with applying such approaches to existing code is that 
they require significant rewriting to target the new DSL. 

Embedded DSLs such as Halide (Ragan-Kelley et al., 
2013) in C++, PolyMage (Mullapudi et al., 2015) in Python, 
and TiDA (Unat et al., 2016) in C++, make it more practical 
to rewrite codes written in the embedded language. 
Additionally, PolyMage and Halide were originally 
developed for image processing pipelines, and the PDE 
solvers we have been targeting have difficult issues such as 
complex boundary conditions that make fitting the DSL 
programming model difficult. 

TiDA (Unat et al., 2016) is used to implement PDEs. In 
TiDA, scientific computations such as the ones we target 
are written in terms of computations over tiles of data. This 
enables the compiler and runtime system to handle the data 
layout, communication overlap, and tuning of tiling sizes. 
This approach does require some rewriting, but modularises 
the codes in a similar way to what many PDE solvers 
already use: iteration over blocks of data. Their focus is on 
the compile time and runtime scheduling of those blocks 
while our focus is on the compile-time optimisation across 
those blocks as shown in Olschanowsky et al. (2014). 

In Zhou et al. (2012), compiler strategies for fusing and 
hierarchically tiling across loops are presented. The 
hierarchical tiling across loops transformation is one we 
plan to incorporate into the loop chain schedule pragma. 
The loop chain abstraction provides just the information 
needed to apply this transformation in the compiler. 

6.2 Programmer-guided code transformation 

The idea of providing optimisation hints to the compiler 
through directives is not a new one. The Intel compiler 
(among others) offers a range of pragmas to aid in 
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optimising applications. For example, the following Fortran 
code uses the loop count directive. 

!DIR\$ LOOP COUNT (10000) 

do i =1,m 

b(i) = a(i) +1 

enddo 

It is likely that with this information the compiler will 
schedule the code differently than it would without. The 
directives available through the Intel compiler that are most 
related to our work are the loop optimisation pragmas: 
nofusion, unroll, and nounroll. There is not, however, a 
pragma available that will simplify the data flow analysis 
necessary for loop fusion and shifting in complex scientific 
applications. 

Other frameworks have been developed that allow the 
programmer to apply more complex optimisations. 
Frameworks such as Orio (Norris et al., 2007) involve 
annotating the source code with instructions for 
optimisations. POET (Yi, 2012), CHiLL (Hall et al., 2010), 
and URUK (Girbal et al., 2006) each provide a scripting 
language for optimisation. The optimisation scripts (or 
recipes) can be placed within the source code or associated 
with the source code from an external file. 

6.3 Improving data locality by aggregating 
computation into tasks 

Various approaches have been developed to navigate the 
trade-off between parallelism and locality. We leverage the 
concept that developing a static aggregation or tiling 
strategy followed by dynamic execution of a task graph 
results in improved data locality within each tile and 
concurrency, load balancing, and memory latency tolerance 
between tiles. The key difference between previous work 
and loop chaining is that the programmer’s responsibilities 
are less while still having feasible program analysis 
requirements. 

The problem with having the programmer aggregate 
computations into tasks is that the programmer has to make 
some decision about task granularity across loops, and that 
decision might not be portable. There are various ways to 
aggregate computations into tasks: using an OpenMP 
pragma and specifying the chunk size (Dagum and Menon, 
1998), tiling the loop and having tile iterations be tasks 
(Baskaran et al., 2009), iteration space slicing (Pugh and 
Rosser, 1999; Beletska et al., 2011), and encapsulating tasks 
within functions that have parameters indicating the task 
granularity. The OmpSs work (Perez et al., 2008, Duran  
et al., 2011) has the programmer indicate tasks by placing 
pragmas on C function definitions with in/out information 
about parameters and whether a function should be 
considered higher priority. Many new programming models 
(Duran et al., 2008; Chan et al., 2008; Andrade et al., 2009; 
Huang et al., 2010; Chandramowlishwaran et al., 2010; 
Cicotti and Baden, 2011; Augonnet et al., 2011) provide a  
 

task graph abstraction and suggest that programmers rewrite 
existing code with sequences of parallel loops in the form of 
task graphs instead. Iteration space slicing techniques (Pugh 
and Rosser, 1999; Beletska et al., 2011) that find sets of 
iterations across loops by doing transitive closure with data 
dependence relation information help automate task 
aggregation but depend heavily on precise and 
interprocedural data dependence analysis. 

Once a task graph has been created, there are various 
ways of optimising the performance of the task graph. In 
Vydyanathan et al. (2009), the authors provide algorithms 
for scheduling task graphs using a mix of task and data 
parallelism. Within each task have data parallelism. In 
Virouleau et al. (2016), the authors propose a new tag for 
OpenMP that allows the user to provide locality information 
through an affinity tag. Other work determines the data 
locality between threads when scheduling tasks and uses 
this to control thread affinity (Terboven et al., 2008; Song  
et al., 2009; Meng et al., 2010). 

The loop chain abstraction can complement any and all 
of these approaches by providing the needed information for 
creating tasks to the compiler and then using the appropriate 
task graph-based system as a backend. An issue we do not 
address in the proposed work is generating distributed 
memory code. Some aggregation approaches do provide 
distributed memory implementations (Cicotti and Baden, 
2011; Schlimbach et al., 2013).We are tackling the problem 
of providing effective shared memory parallelism for 
individual MPI processes. 

7 Limitations 

There are currently some conceptual and practical 
limitations of this work. 

7.1 Parameterising transformations 

A significant amount of effort has gone into parameterising 
code generation for transformations such as tiling 
(Renganarayana et al., 2012; Hartono et al., 2009; 
Renganarayanan et al., 2007). The foundation has been set 
to be able to move forward with this work, however, it is 
not supported in our current tool chain. A specific example 
of this is tiling. It is common to sweep through a set of tile 
sizes to determine the best performing configuration. 
However, with our current configuration each tile size needs 
to be determined at compilation time. It is preferable to 
change this at runtime. 

7.2 Wavefront transformation and automatic skew 
determination 

A method for determining the skew factor required to 
legally parallelise loops after fusion is described in  
Section 2.4. However, this is not currently implemented in 
our transformation framework. 
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8 Conclusions 

There exist programming models, languages, and 
abstractions that can expose and exploit parallelism in 
applications. However, exploiting maximum parallelism 
without respecting data locality results in poor performance 
through excessive memory traffic. We have presented: 

1 a novel programming abstraction though OpenMP style 
pragmas 

2 a software framework to describe and transform loop 
chains. 

These tools can provide developers of new applications, and 
maintainers of legacy applications, with the ability to 
identify and transform loop chains in order to increase 
arithmetic intensity by simultaneously increasing both 
parallelism and data locality. 

Further, we have created a prototype code 
transformation pass and used it to demonstrate the potential 
of these tools to effectively transform simple benchmarks. 
Our performance results are encouraging. We believe that 
this programming abstraction can work reasonably well for 
developers looking to increase the performance of their 
application without requiring them to overhaul their codes. 
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