
86 Int. J. High Performance Computing and Networking, Vol. 13, No. 1, 2019

Copyright © 2019 Inderscience Enterprises Ltd.

Using the loop chain abstraction to schedule across
loops in existing code

Ian J. Bertolacci* and Michelle Mills Strout
The University of Arizona,
Tucson, AZ 85721, USA
Email: ianbertolacci@cs.arizona.edu
Email: mstrout@cs.arizona.edu
*Corresponding author

Jordan Riley and Stephen M.J. Guzik
Department of Mechanical Engineering,
Colorado State University,
1374 Campus Delivery,
Fort Collins, CO 80523, USA
Email: jriley2@rams.colostate.edu
Email: stephen.guzik@colostate.edu

Eddie C. Davis and Catherine Olschanowsky
Boise State University,
1910 University Drive,
Boise, ID 83725, USA
Email: eddiedavis@boisestate.edu
Email: catherineolschan@boisestate.edu

Abstract: Exposing opportunities for parallelisation while explicitly managing data locality is
the primary challenge to porting and optimising computational science simulation codes to
improve performance. OpenMP provides mechanisms for expressing parallelism, but it remains
the programmer’s responsibility to group computations to improve data locality. The loop chain
abstraction, where a summary of data access patterns is included as pragmas associated with
parallel loops, provides compilers with sufficient information to automate the parallelism versus
data locality trade-off. We present the syntax and semantics of loop chain pragmas for indicating
information about loops belonging to the loop chain and specification of a high-level schedule for
the loop chain. We show example usage of the pragmas, detail attempts to automate the
transformation of a legacy scientific code written with specific language constraints to loop chain
codes, describe the compiler implementation for loop chain pragmas, and exhibit performance
results for a computational fluid dynamics benchmark.

Keywords: loop optimisations; loop transformations; loop chain abstraction; data locality;
source-to-source transformation; performance optimisation; high performance computing;
scientific computing; parallel programming; legacy scientific code.

Reference to this paper should be made as follows: Bertolacci, I.J., Strout, M.M., Riley, J.,
Guzik, S.M.J., Davis, E.C. and Olschanowsky, C. (2019) ‘Using the loop chain abstraction to
schedule across loops in existing code’, Int. J. High Performance Computing and Networking,
Vol. 13, No. 1, pp.86–104.

Biographical notes: Ian J. Bertolacci is a PhD student at the University of Arizona. His focus is
on providing scientists with high performance computing resources through programming
language and compiler technologies. He earned his undergraduate degrees in computer science,
psychology, and applied computing technology from Colorado State University.

Michelle Mills Strout is a Professor at the University of Arizona and her research areas are high
performance computing and compilers. She earned her PhD at the University of California, San
Diego in 2003 with co-Advisors Jeanne Ferrante and Larry Carter. In 2008, she received a
CAREER Award from the National Science Foundation for research in parallelisation techniques
for irregular applications, such as molecular dynamics simulations. In 2010, she received a DOE
Early Career award to fund research in separating the specification of scientific computing
applications from the specification of implementation details such as how to parallelise such
computations.

 Using the loop chain abstraction to schedule across loops in existing code 87

Jordan Riley is a PhD student at Colorado State University in the CFD and Propulsion
Laboratory. His focus is on developing and applying new programming models for
computational fluid dynamic applications. He earned his Bachelor of Science in Aerospace
Engineering from the University of Florida, and his Master’s of Science in Mechanical and
Aerospace Engineering from Illinois Institute of Technology.

Stephen M.J. Guzik is an Assistant Professor in the Department of Mechanical Engineering at
Colorado State University. He directs research in the CFD and Propulsion Laboratory with a
focus on high-performance computing. He earned his PhD in Aerospace Sciences and
Engineering from the University of Toronto Institute for Aerospace Studies in 2010. Before
joining Colorado State University, he worked as a Post-Doctoral Researcher in the Center for
Applied Scientific Computing at Lawrence Livermore National Laboratory.

Eddie C. Davis received his undergraduate degree in Computer Science and Applied
Mathematics from Montana State University, Master of Computer Science from Boise State
University, and is currently pursuing a PhD in Computing with a scientific emphasis at the same.
He has performed distributed bioinformatics research in comparative genomics, and has been an
engineer in the semiconductor industry for several years, characterising devices for emerging
memory technologies.

Catherine Olschanowsky is currently faculty in the Computer Science Department at Boise State
University. She was previously a Research Professor in the Computer Science and Mechanical
Engineering Departments at CSU. Her research area is high performance computing application
performance. She earned her PhD in Computer Science from University of California at San
Diego in the Performance Modeling and Characterization Laboratory. She also previously
worked as a Research Scientist and Software Engineer at the San Diego Supercomputer Center.

This paper is a revised and expanded version of a paper entitled ‘Identifying and scheduling loop
chains using directives’ presented at Third International Workshop on Accelerator Programming
Using Directives, Salt Lake City, 14 November 2016.

1 Introduction

Many large scientific applications expose parallelism at a
shared memory level using a data parallel paradigm. The
applications are ‘modularised’ into a series of parallel and
reduction loops. Several programming models, languages,
and abstractions expose parallelism in this manner including
OpenMP, OpenCL, and OpenACC. The problem is that
exploiting all possible parallelism without regard to data
locality leads to insufficient arithmetic intensity (i.e., the
ratio of computation to memory accesses) and excessive
memory traffic, resulting in poor performance and lack of
parallel scaling. This paper presents a mechanism to expose
and exploit both parallelism and data locality in a series of
data parallel loops.

The main limitations of previous work for expressing
data locality are that:

1 the programmer is responsible for aggregating
computations into tasks

2 tasks are limited to groupings of iterations within a
single loop or user-defined functions

3 the programmer has to rewrite full computations in
another programming model.

The principal advantage of the loop chain abstraction
presented here is that it depends on inserting pragmas, a
familiar mechanism, and they can be added to legacy

applications, meaning that only the high-level loop chain
annotations need to be adjusted for efficient execution on
various hardware configurations.

The loop chain abstraction represents a sequence of
parallel and/or reduction loops that explicitly share data
(Krieger et al., 2013). Figure 1 illustrates an example loop
chain with two loop nests and the pragmas we propose in
this paper. Such coding patterns are often found in stencil
codes and other kinds of buffered producer/consumer codes.
The loop chain abstraction requires that each loop in the
chain is parallel or a reduction (typically an array
reduction), has regular, non-sparse, domain, and static
access functions that indicate how each iteration accesses
data spaces. With these requirements, the loop chain
abstraction can be used to derive a partially ordered set of
iterations that makes scheduling and determining data
distributions across loops possible for a compiler and/or
run-time system. The flexibility to schedule across loops
enables better management of the data locality and
parallelism trade-off.

Providing data access information that enables the
compiler to determine dependences and high-level schedule
information in pragmas enables domain scientists to
incrementally parallelise large production codes. The
pragmas specify the loop chain abstraction and schedules
for loop chains, which were developed to navigate the
trade-off between data locality and parallelism while
requiring minimal extra information from programmers.

88 I.J. Bertolacci et al.

Figure 1 Example of annotated source code (schedule omitted)

#pragma omplc loopchain schedule(…)
{
 #pragma omplc for domain (lb:ub) \
 with (i) \
 write A {(i)}, \
 read B {(i–1), (i), (i+1)}
 for (int i = lb ; i <= ub; i += 1)
 A[i] = (B[i–1] + B[i] + B[i+1])
 #pragma omplc for domain (lb:ub) \
 with (i) \
 write A {(i)}, \
 read A {(i)}
 for (int i = lb; i <= ub; i += 1)
 A[i] = A[i] * (1.0/3.0);
}

The current implementation focuses on expressing
schedules that balance data locality and parallelism for
shared-memory multicore architectures. However, the
information provided could be used to automate high-level
schedule specifications beneficial to accelerators as well.
For example, Grosser et al. (2013) demonstrated the
performance advantages of split tiling for stencil codes on
GPUs. Additionally, they presented a mechanism for
automatic code generation of split tiling code. While
currently beyond the scope of this work, this is precisely the
type of transformation that is a candidate for inclusion in
loop chains.

Manual implementation of the transformations has
demonstrated their potential impact. In a previous paper, we
manually applied the loop chain abstraction and explored
the trade-offs between parallelism and data locality by
employing different loop chain scheduling strategies
(Olschanowsky et al., 2014). In this paper, we use Jacobi2D
as an illustrative example and show how many of those
same transformations can be specified at a high level with
the loop chain schedule pragma. For performance
experiments, we used mini-flux-div, a stencil code
representative of computational fluid dynamics (CFD)
applications.

The specific contributions of this work include:

 a pragma grammar to specify loop chains and their
schedules

 an informal description of the semantics of the schedule
commands

 examples of how a user would annotate existing code
with the pragmas

 a discussion of the challenges associated with preparing
an existing application to accommodate the loop chain
abstraction

 a prototype source-to-source translator that implements
the pragmas

 a discussion of the current limitations in the
implementation.

Our preliminary results indicate that this programming
abstraction can serve as a useful tool for developers and
maintainers seeking to improve the performance of their
application without having to overhaul their code.

2 Loop chain syntax and semantics

A loop chain is comprised of a sequence of loop nests with
no code occurring between them. The annotations around a
loop chain describe the iteration space of each loop nest as
an unordered integer set and the data usage patterns as a
mapping between iterators and representative data spaces.
The combination of the iteration spaces and data usage
information describes a partial ordering of iterations that is
required for correctness.

A schedule indicates the transformations that should be
applied to the loop chain. The application of the schedule
takes advantage of the fact that the ordering of iterations is
partial. The goal is to exploit any flexibility in the partial
ordering to balance data locality and parallelism and
improve performance.

Figure 2 Full LoopChain directive grammar

nest annotation → for nest domain definition access
definition

nest domain definition → domain (expression : expression
 (, expression : expression)*)

access definition> → with (id (, id)*) access atom (,
access atom)*

access atom → (read | write) id
 { iterator expression (, iterator expression)*}

iterator expression → (expression (, expression)*)

loopchain annotation → loopchain schedule
 ((schedule atom (, schedule

atom)*)?)

schedule atom → serial | parallel | wavefront
 | fuse (((int (, int)*))*)
 | tile ((int (, int)*),
 schedule atom , schedule atom)

The loop chain information is communicated via pragmas.
Pragmas allow for incremental changes to be made to
existing applications. Much like OpenMP pragmas they can
be ignored by a compiler that does not support the
optimisations. For the purpose of this paper, we use the
pragma label omplc, indicating that the loop chain
transformations have the potential for inclusion within the
OpenMP standard. The syntax of a loop chain pragma is
similar to that of OpenMP pragmas.

#pragma omplc directive-name [clause [[,]clause]…]

 Using the loop chain abstraction to schedule across loops in existing code 89

See Figure 2 for the full loop chain directive grammar.
There are two directives in this grammar: for and loopchain.
The following sections describe each of the directives and
clauses included in the loop chain abstraction as well as
their semantics.

2.1 The for directive: domains and access patterns

The domain and access pattern annotations describe the
iteration space of each loop nest and the accesses to data
made within that space. These annotations only describe the
behaviour of the corresponding code; they do not modify or
operate on the nests that they describe.

A domain is specified at the top level of each loop nest
in the chain. The domains among loop nests within the same
loop chain must share dimensionality, but do not need to
share bounds. Note that the domains specified are the
domains that participate in the scheduling transformations
specified for the loop chain. Any loops inner to that domain
are treated as a single statement with respect to scheduling.
In other words, it is possible for a sequence of loop nests
that vary in dimensionality to be included in a loop chain,
because it is the domain expressed in the directive that
determines the dimensions considered for scheduling, not
the code itself (see Figure 3 for an example of this).

Figure 3 An example of a sequence of loop nests of unequal
depth and unknown access patterns that could be
defined and optimised with the loop chain abstraction

for (int i = lb; i <= ub; ++i){
 A[i] = (B[i–1] + B[i] + B[i+1])*(1.0/3.0);
}
for (int i = lb; i <= ub; ++i){
 for (int j = lb; j <= ub; ++j){
 foo(A, B, i, j) ;
 }
}

The domain clause within the for clause of the pragma takes
the form:

domain (d1_lb:d1_ub,d2_lb...)

The domain of a loop nest is specified as a list of inclusive
ranges representing the lower and upper bound of each
dimension of the loop nest. An N dimension loop nest
defined by a k dimension domain (where k ≤ N), indicates
that the k outer loops will participate in the loop chain
schedule and the N – k inner loops of the nest will be treated
as a single statement.

While a loop nest domain can often be retrieved through
program analysis, it may be the case that the syntax of the
loop nest does not reflect the domain of interest for loop
chain scheduling. For example, the inner most loop(s) may
be considered to be the body of the outer most loop(s), such
as when iterating within the components of an array
structure. This is common in computation fluid dynamics

codes, where various physical components are stored at
each mesh point in an array.

Each loop nest’s data access pattern is expressed as a
mapping between the iteration space and the accesses into
abstract data space(s). The map can either be expressed as a
read or a write access, depending on the action taken in the
code. The data access pattern specification occurs after the
domain specification leading with the keyword with
followed by an ordered list of iterators: outer loop to inner
loop. The iterator names do not necessarily have to match
the actual loop iterators used in the loop nest.

Data space names do not have to match any actual
variable names and can be used to aggregate and model
accesses to a number of arrays. The data access clause takes
the following form, where f and g are expressions using the
available loop iterators:

with (i,j,…) read ID{(f(i,j,…)),
 (g(i,j,…)),…}
 read ID2{…}
 write ID3{…}
 …

In the example in Figure 3, the access pattern for the first
loop states that the iteration i writes to the data space A
using i and that it reads from the data space B using i – 1, i,
and i + 1. In this example, the access pattern in the first loop
nest is obvious. However, the access pattern in the second
loop nest is obfuscated with a function call. The with
directive enables a programmer to declaratively indicate
how data is being accessed in another function. Another
example where program analysis would have difficulties
analysing access patterns of interest is the following:

double* ptr_1 = buffer + mk_offset(...);

double* ptr_2 = buffer + mk_offset(...);

Without precise inter-procedural analysis (and in some
cases even with it), it is impossible at compile time to know
if ptr_1 and ptr_2 are the same or might result in
overlapping accesses. For this reason, we have the
programmer specify the access pattern explicitly.

2.2 The loopchain directive: scheduling loop chains

The loopchain directive, in addition to indicating the loop
chain, communicates the scheduling transformations to be
applied to the chain as a whole. This directive is placed at
the beginning of the encapsulating scope. Currently, the
schedule is specified by the programmer, but it has been
designed so it can be used by an autotuner, compiler, or
other automated tool when that capability is available.

Figure 1 shows an annotated input to the
source-to-source translator. If the schedule command for
Figure 1 was schedule(fuse()) then the resulting
code would be Figure 4. If the schedule command
was schedule(fuse(), tile((10), parallel,
serial)), then the resulting code would be Figure 5.

90 I.J. Bertolacci et al.

Figure 4 Expected form of transformed code from Figure 1 after
loop fusion (schedule(fuse()))

for (int i = lb; i <= ub; i += 1){
 A[i] = (B[i–1] + B[i] + B[i+1]);
 A[i] = A[i] * (1.0/3.0);
}

Figure 5 Expected form of transformed code from Figure 1 after
loop fusion and tiling by 10 (schedule(fuse(), tile((10),
parallel, serial)))

#pragma omp parallel for
for (int tile = floord(lb, 10); tile <= floord(ub, 10);
tile = tile + 1){
 for (int i = max(10 * tile, lb); i <= min(10 * tile + 9, ub); i =

i + 1){
 A[i] = B[i–1] + B[i] + B[i+1];
 A[i] = A[i] * (1.0/3.0);
 }
}

Note: floord is a C macro that does integer integer
division.

A limited set of schedules are included in the design to
balance the trade-off between ease-of-use by the
programmer and potential performance gains. The initial set
of available schedules is built prioritising those that
have demonstrated performance impacts on scientific
applications. The transformations performed on an
application benchmark, mini-flux-div (Olschanowsky et al.,
2014), motivated our choice of loop transformations.
Transformations that are currently implemented in our
prototype tools are fuse and tile. Additional transformations
are currently under development. The following is a short
description of each transformation specified by a schedule
command.

2.2.1 Syntax and semantics of schedule operations

Currently there are five schedule operations included in the
directive grammar: serial, parallel, fuse, wavefront, and tile.
Syntactically, the schedule directive is a list of these
schedule operations in the order they are to be applied
(Section 2.2). The formal grammar for this portion of the
directive can be found in the loopchain annotation
production in Figure 2.

 fuse: 1 1 2 2
1 1([(, ...,), (, ...,)...]).d dfuse s s s s All of the

loops in the loop chain are fused using a loop fusion
transformation to the depth indicated by their domains.
The results are a single loop nest in the loop chain.
How much shifting each loop requires will be
determined based on the data dependences induced
by the data accesses and constrained by the loop
domains unless the programmer explicitly provides the
optional shifting information (e.g., 1 1

1([(, ...,),dfuse s s
2 2
1(, ...,)...]).ds s The value n

ds tells the translator how

far to shift the loop at depth d for loop nest n. The
original order of the loops within the loop chain is the
order of statements in the fused loop body.

 tile: tile((s1, …, sD), <outer schedule>, <inner
schedule>) indicates that all the loop nests in the loop
chain should be tiled. Specifically, the D outermost
loops for each loop nest should be rectangularly tiled
using a tile of size (s1, …, sD), where sd indicates the
tile size in dimension d of the loop nest. The <outer
schedule> and <inner schedule> are the schedules over
the tiles and within the tiles. The full grammar for this
operation can be found in the schedule atom production
in Figure 2.

Currently, only constant-sized tiles are supported.
Providing the schedule command tile(16) will
result in tiling the outer loop of a loop nest with
16 iterations in each tile. Specifying the schedule
command tile(16, 16, 16) will create cubic tiles of size
163. The dimensionality of the tiling specified cannot
exceed that of the domain provided in the for loop
pragmas in the loop nest.

 wavefront: This schedule command when at the
outermost level of the schedule annotation indicates
that all the loop nests in the loop chain should use a
wavefront parallelisation strategy. A wavefront strategy
turns a loop nest into one with an outer serial loop (no
change) and then D – 1 inner parallel loops. The D – 1
inner parallel loops will be skewed enough to make the
parallelism legal. The wavefront command can also be
used as the schedule over and/or within tiles.

 serial: Typically only used in the context of tiling, the
serial directive indicates that either the outer loop over
tiles or within tiles should not be parallelised.

 parallel: indicates that the outer loop of all loop nests in
the loop chain should be parallelised. Also used in a tile
schedule to add parallelism over or within tiles.

2.3 Automatic determination of required shift
distances

Stencil computations are common in scientific applications
and cannot be directly fused. Fusing two stencil
computations that share data in a producer/consumer pattern
requires shifting at least one of the iteration spaces to
preserve data dependences.

This can be observed in the Jacobi benchmark code in
Figure 6. Figure 7 shows 16 iterations of loop 1 and of
loop 2. Each iteration in loop 2 depends on its neighbouring
iterations from loop 1. A direct fuse of these loops leads to
an illegal dependence cycle between iterations in the fused
loop. However, a shift of loop 2 in both iterator directions
results in a legal loop fusion and an opportunity to expose
wavefront parallelism.

 Using the loop chain abstraction to schedule across loops in existing code 91

Figure 6 A Jacobi2D benchmark that uses ping pong storage is
an example of a sequence of loops that could be
defined and optimised with the loop chain abstraction

for (int t = 1; t <= T/2 ; t += 2){
 for (int i = 1; i <= N; i++){
 for (int j = 1; j <= N; j++){
 A[i][j] = (B[i–1][j] + B[i][j] + B[i+1][j]
 + B[i][j–1] + B[i][j+1])*1/5;
 }
 }
 for (int i =1; i <= N; i++){
 for (int j = 1; j <= N; j++){
 B[i][j] = (A[i–1][j] + A[i][j] + A[i+1][j]
 + A[i][j–1] + A[i][j+1])*1/5;
 }
 }
}

In this section, we present an algorithm for determining the
required shifting for a loop chain to make a fuse legal. The
challenge is to automatically identify the shift extent for
each dimension of each loop nest in the loop chain. In this
example, the stencil depth is the same for both loop nests
and is 1 and this happens to lead to a shift of size 1 in each
dimension for loop 2. However, in some scientific codes,
the stencil depth varies among loops. Solving this challenge
is one of the motivations for including the data access
information in the with clause of the for directive.

The process for determining the shifts requires
examining the data accesses of each loop nest compared
with all of the loop nests that come before it in the loop
chain. Each loop nest has associated with it the read and
write patterns for each logical data space expressed using
the access pattern grammar shown in Figure 2. Using this
information, the shifts required to satisfy the dependences of
each dimension of each loop nest can be computed as an
integer linear programming (ILP) problem.

Figure 7 Data dependences in Jacobi2D require a shift before fuse (see online version for colours)

Notes: The original iteration order (on the left) shows the data dependences between the first and second loop nests. The centre

iteration schedule is erroneous because there are data dependences that are not satisfied. The final ordering includes shifts
of 1 in each direction and is correct.

92 I.J. Bertolacci et al.

We specify the ILP problem as a solution of the shift extents
Sld, where l indicates the position of the loop nest in the
chain and d indicates the dimension of the loop nest. The
objective function the ILP solver will minimise is the
summation of all the shift extents,

,
.ldl d

S To

synthesise the constraints of the ILP problem, we first form
a weighted, directed multigraph. In this graph, each node
represents some shift Sld. If there are two loops x and y
where x < y, who share a dataspace w that is either read in x
and written in y, or written in x and read in y, or written in x
and again written in y, then there exists an edge from Sxd to
Syd in the graph where the weight is difference between two
accesses in terms of their constant offsets, (iyd + cyd) –
(ixd + cxd) = cyd – cxd. There is a separate multigraph for each
dataspace dimension. A legality constraint is formed with
respect to Sxd and Syd, such that maxWeight(Sxd, Syd) =
Syd – Sxd, where maxWeight(a, b) is the maximum weight
between the nodes a and b. Additionally, all shift extents are
individually constrained to be greater than or equal to zero,

l, d, 0 ≤ Sld.
From the Jacobi-2D example in Figure 6, we can

produce the multigraphs shown in Figure 8 and from it the
constraints: 1 = S2,1 – S1,1, 1 = S2,2 – S1,2, and 0 ≤ S1,1 0 ≤
S1,2 0 ≤ S2,1 0 ≤ S2,2. Our ILP solver produces the shifts
S1,1 = 0, S1,2 = 0, S2,1 = 1, and S2,2 = 1.

Figure 8 Graph forming the constraints of the ILP problem
solving for shift extents to perform fusion

In the situation where a tile schedule has already been
applied, we convert the original dependences between
individual iterations into dependences between tiles by
applying the function

1 if 0
() 0 if 0

1 if 0

x
f x x

x

to all the weights in the graph. The constraints for the ILP
problem can be synthesised as usual. We make the
assumption that no access id + cd will have a constant cd
greater than the tile size in that dimension. This forces
dependencies to be at most between adjacent tiles.

2.4 Determining a skew factor for wavefront
parallelism

After loops have been shifted and fused, dependences that
once went between loops will now be carried by loops in the
fused loop nest. This may have eliminated some parallelism.
An example of this can be seen in Figure 7, where after
shifting and fusing, both dimensions of the new loop nest
carry a dependence thus preventing parallelisation. By
skewing the loop nest, we can force the outermost loop to
carry the loop dependencies and expose parallelism in the
inner dimensions.

To review, a dimension d of a loop nest carries a
dependence when the first non-zero in a dependence vector
(k1, …, kD) occurs in that dimension. After a shift by (S1, …,
S), the dependences are shifted to create the new
dependence vector (k1 + S1, …, kD + SD). After the shift has
been applied the fused loop is permutable and therefore all
of the entries in the dependence vectors are non-negative,

d, kd + Sd ≥ 0. Additionally, since we are only considering
dependence vectors that cause one of the loops to carry a
dependence, for each dependence vector at least one of the
entries in the dependence vector will be at least one
non-zero, d, kd + Sd > 0.

A conservative solution for skewing would be to skew i1
by all id for d > 1, using the transformation map: (i1, …, iD)

→ 21
, , ..., .

D
d Dd

i i i Applying this transformation to

each of the dependence vectors results in dependence
vectors of the form ((k1 + S1) + (k2 + S2) + … + (kD + SD), k2
+ S2, …, kD + SD). Since at least one of the subexpressions
in the first dimension of the dependence vectors is non-zero,
the outermost loop will now carry all of the dependences.

In the Jacobi 2D example from Figure 6, the dependence
vectors in the illegal fuse are {(–1, 0), (0, –1), (0, 0), (0, 1),
(1, 0)}. After the (1, 1) shift has been applied, the new, legal
dependence vectors are {(0, 1), (1, 0), (1, 1), (1, 2), (2, 1)}.
The dependence vectors {(1, 0), (1, 1), (1, 2), (2, 1)} are
carried by the outer loop (dimension 1), and the dependence
vector (0, 1) is carried by the inner loop (dimension 2). To
skew for wavefront parallelism, the mapping would be
(i1, i2) → (i1 + i2, i2). This changes the dependence vectors
to be {(1, 1), (1, 0), (2, 1), (3, 2), (3, 1)}. The outer loop
(dimension 1) now carries all the dependencies and so the
inner dimensions of the loop can be parallelised.

2.5 Ordering and nesting of the scheduling
commands

The scheduling commands can be listed in order or nested
in a tiling command. A command in the list, not nested in
another command, affects all loop nests in the loop chain.
For example, the fusion command turns a list of N loop

 Using the loop chain abstraction to schedule across loops in existing code 93

nests into a list with only a single loop nest in it. Any
commands after fusion will be operating on that new list
with only a single item. This is the conceptual organisation.
To handle shifts and/or loop nest domains in general not
lining up, there will be extra edge loops in the code that is
generated.

Tiling adds outer loops to the loop nest domains that
iterate over tiles and then modifies the loop nest specified
domains so that they iterate within a single tile. The tiles
will cover the original loop domain for the loop nest.

Thus, tiling splits each loop nest domain into an outer
domain over tiles and an inner domain over the points
within a single tile. Each of those domains can be scheduled
with any of the scheduling commands excluding fusion.
Fusion over a single domain does not apply. Fusion is only
relevant on a loop chain where there is a list of loop nest
outer domains.

Figures 9 and 10 illustrate the impact ordering have in
the schedule. In Figure 9, fusion happens before tiling thus
resulting in a single loop nest that has been tiled. In
Figure 10, tiling is specified before fusion thus leading to
only the tile loops being fused.

Figure 9 Original loops with loop chain schedule and
corresponding scheduled loops

#pragma omplc loopchain schedule(fuse (), tile ((3, 4), serial,
serial))
{
 #pragma omplc for domain(lb:ub, lb:ub) …
 for i1
 for i2
 loopbody_1()
 #pragma omplc for domain(lb:ub, lb:ub) …
 for i1p
 for i2p
 loopbody_2()
}
–––––––––––––––––––––––Result–––––––––––––––––––––––
for t1
 for t2
 for i1
 for i2
 loopbody_1()
 loopbody_2()

3 Legacy code preparation for loop chaining

Chombo (Adams et al., 2014) is a library for solving
partial differential equations on rectilinear grids
with adaptive-mesh-refinement (AMR). Solutions are
implemented on Cartesian grids and exhibit many stencil
computations. Applications that use Chombo include land
ice sheet modelling, shallow water flows, plasma
simulations, Navier-Stokes solvers, and combustion

modelling. Block-structured AMR is used to locally refine
the mesh, improving accuracy near strong gradients and
reducing memory and run time. The block-structured mesh
provides many nested loops with well-defined domains that
would be candidates for loop chains. However, like many
legacy applications, the loop chain abstraction can not be
directly applied to Chombo applications. In this section,
automatic transformation of a legacy Chombo application to
satisfy loop chaining constraints is presented. Impressive
results are obtained, but the translator proved to be
extremely brittle. Overall, the cost of maintaining the
translator may outweigh rewriting the application in a
domain-specific language more amenable to loop chaining.

Figure 10 Original loops with loop chain schedule and
corresponding scheduled loops

#pragma omplc loopchain schedule(tile ((3, 4), serial, serial),
fuse())
{ #
pragma omplc for domain(lb:ub, lb:ub) …
 for i1
 for i2
 loopbody_1()
#pragma omplc for domain(lb:ub, lb:ub) …
 for i1p
 for i2p
 loopbody_2()
}
–––––––––––––––––––––––Result–––––––––––––––––––––––
for t1
 for t2
 for i1
 for i2
 loopbody_1()
 for i1p
 for i2p
 loopbody_2()

Note: This time the tiling is done before the fuse.

3.1 Preparing a Chombo application for loop
chaining

Existing legacy applications in Chombo often have loops
sunken into Fortran functions, various code snippets
between loop nests, and a significant amount of conditional
code within the loop to handle boundary conditions. While
there are countless opportunities for loop chaining, the
legacy applications need to be transformed in preparation
for incorporating the loop chaining abstraction. A typical set
of transformations and the challenges associated with
automating them are presented in an application
called Chord, a fourth-order finite volume compressible
Navier-Stokes solver with adaptive-mesh refinement
and combustion. Use of the library implies some

94 I.J. Bertolacci et al.

domain-specific knowledge that can be used to help with the
transformations.

Chord is written with the Chombo framework and
follows a consistent coding pattern common to Chombo
applications. The higher-level data structures are written in
C++, and Fortran subroutines are called to iterate over
rectangular portions of the domain, called boxes, and
perform mathematical calculations, often in the form of
stencils. The targeted loops of the loop chain are the loops
iterating over these boxes. Therefore, the code targeted for
transformation into a loop chain could span several calls to
Fortran subroutines.

A source-to-source translator was developed that
automates the required transformations using the
ROSE compiler framework (Quinlan and Liao, 2011).
Transformations required include: translating Fortran
subroutines to C, in-lining function calls, relocating code
that occurs between loop nests, and control flow
consolidation. The original code is annotated with the
required loop chain directives and an additional set of helper
directives that are specific to the code preparation translator.
The transformations are described below along with the
challenges associated with their implementation.

3.2 Fortran to C translation

The majority of the compute intensive code in Chombo
applications is written in dimension-independent Chombo
Fortran to gain the efficiency of Fortran multi-dimensional
arrays. This is translated with Perl to dimension-dependent
Fortran, i.e., the number of spatial dimensions is selected at
compile time. The contents of the Fortran file are translated
to C using an existing Fortran to C translation tool
developed with the Rose compiler. To accomplish this while
keeping a valid AST, the translator creates a child process to
translate the Fortran to C. The parent then parses theC file
into its AST to have access to the functions. The challenge
with this step is not the language translation, but locating
the relevant Fortran code.

Figure 11 This is example pseudocode of the C++ code that
needs to be prepared for loop chaining

#pragma pre-lc begin file (filename) schedule(schedule type)
#pragma pre-lc inline
 call to a Fortran subroutine
 statements that are not part of the loop chain
#pragma pre-lc inline
 call to a Fortran subroutine
#pragma pre-lc end

Recall that the calling code is written in C++. This
necessarily means that the Fortran code does not exist in the
same file as the driving code. During a typical build, the
Fortran and C++ object code are combined during the
linking phase. During compilation, where the code is
transformed, there is no access to Fortran. Figure 11 shows

the pre-lc annotations used by the ‘pre-loopchain’ tool to
indicate where the Fortran code is located.

The need to indicate the location of the Fortran file is
the other limitation of this approach. This places an extra
burden on the developer and, perhaps more problematic,
introduces an opportunity for failure if the code is refactored
and the Fortran code is moved.

3.3 Inlining

Once the contents of the Fortran code have been translated
into C, the function calls are replaced with inlined functions.
The Rose compiler framework automates this step.
However, several steps are taken to modify the inlined
block. Some unnecessary variables declared as part of the
inlining are replaced. The inlined blocks are flattened to get
the loops from multiple function calls into the same block.
Therefore, any variable declarations that are not removed
get a unique name to avoid naming conflicts. The renamed
variables include the variables referenced in the domain
directive, and the pragma has to be modified to use the new
names. There is a problematic side effect involving the
creation of the data access portion of the loop chain
directive. The loop chain loop directives are included in the
definition of the Fortran subroutine. At that point, there is
no context for naming the data spaces. The data space
names used do not have a reference to be consistent across
multiple Fortran subroutines. The current tool renames the
data spaces after inlining based on data flow analysis. This
is a challenging step and not always possible. One solution
is to put the original pragma at the calling location rather
than at the definition of the subroutine. This may be easier
for the compiler infrastructure, but if a subroutine is called
multiple times in the code it necessitates duplicating
information. It also places the data access directives away
from the source code it is representing. This challenge is not
related to crossing language boundaries, but should be
considered for all cases that may include function calls
within a loop chain.

3.4 Control flow consolidation

A common pattern in Chombo Fortran applications is to
check for boundary conditions within each function as seen
in Figure 12 line 7. During the majority of the execution
these conditions are false and bypassed. The programmer
can designate the statement to be removed with a strip
directive as shown in Figure 12 line 6. The strip
directives are expected to be on if statements, but it is not
necessary. The conditionals are combined with or
operations and moved outside the loop chain to maintain
correctness. The conditional of the if-else loop chain
statement is replaced with this new combination of
conditionals from the loop chain block. In the case that they
are true, the code generated for the loop chain is bypassed
and the original code is called instead. The structure of the
resulting code can be seen in Figure 13.

 Using the loop chain abstraction to schedule across loops in existing code 95

Figure 12 This is example pseudocode of a Fortran subroutine
that needs to be prepared for loop chaining

subroutine func(parameters)
 implicit none
 declaration statements
!$ pre-lc loop (loop directives)
 loop over box
!$ chaining pre-lc strip
 if at boundary then
 treat boundary
 endif
 return
end

Figure 13 An if-else statement replaces the statements between
pre-lc pragmas with begin and end directives

if (stripped conditionals) {
 original statements
} else {
 {// loop chain block
 prospective loop chain
 }
}

Notes: If any conditionals evaluate to true, the loop chain
is avoided. The example of Figure 12 illustrates
conditionals that must be removed from the loop
chain.

3.5 Relocating intermediate code

Any statement that is not part of the loop chain, but is still
within the loop chain boundary must be moved. Much of
this code includes declarations and space allocation that can
safely be moved before the loop chain. This knowledge is
specific to the domain-specific style of Chombo
applications.

Figure 14 This is the structure of source code after a pre-loop
chain transformation

if (stripped conditionals) {
 original code
} else {
 lifted statements
 #pragma omplc loopchain schedule(schedule type)
 {
 #pragma omplc for …
 loop from inlined function
 #pragma omplc for …
 loop from inlined function
 }
}

The statements between for loops need to be moved. With
the functions inlined, the translator can check for
dependences. The translator traverses the immediate
children of the loop chain block for any statement that has
not been designated with a loop directive. When such a
statement is found, the statement needs to be removed
from the loop chain block. If the statement is a pragma,
it is removed and deleted. Otherwise the statement is
compared to previous statements in the loop chain
block for dependences. If there are any read-after-write,
write-after-read, or a write-after-write dependences, the
statement cannot be moved before the loop chain. The
dependency checking is overly conservative; for example,
function parameters are assumed to be read and written. An
exception is a member functions that are assumed to not
change the object they operate on. This is because of
Chombo’s extensive use of access functions to pass objects
to the Fortran subroutines. If a statement cannot be lifted,
this loop chain can not proceed.

After the pre-loop chain transformation has the code in a
structure conducive for the loop chain transformation,
the loop chain pragmas are inserted. The pragmas
corresponding to the loops need to be treated first. The text
for the pragma is copied from the original loop location.

3.6 Results

To obtain performance results, the translator was applied to
the fourth-order PPM limiter written in Chombo and a
simulation of shock dynamics was executed in two spatial
dimensions with three levels of AMR. In gas dynamics
solvers, limiters are used to suppress numerical oscillations
near discontinuities by reducing the order of accuracy of
interpolations in an effort to obtain a monotone solution.
The PPM limiter features two calls to Fortran subroutines
and each Fortran subroutine has a loop nest. The loop nests
have a three-dimensional data domain with loops over the
slopes, the cells in the y-direction, and the cells in the
x-direction. The first loop nest has a read of a dataspace
with a three-point stencil and a write to another dataspace.
The second loop nest has reads of both the previous
dataspaces, and each read has a five-point stencil. All of the
stencils are written in one-dimension and then evaluated in
both the x and y-directions.

For the shock-dynamics case with 3 levels of adaptive
mesh refinement, the coarsest grid is 64 × 64, and each
AMR level has a refinement ratio of 2. The maximum box
size is set to 32 cells per direction. The adaptive mesh
refinement increases the number of boxes and the total
number of cells as the simulation progresses. The AMR
shock box case was run with three schedules for the PPM
limiter: the original version with calls to Fortran
subroutines, the loop chain with an empty schedule, and a
loop chain with a fuse schedule.

These cases were run on a single core of an Intel Xeon
E5-2670 v2 CPU at 2.50 GHz clock frequency. The cores
include a 32 KB L1, 256 KB L2, and 25,600 KB L3 caches.
GCC g++ version 4.9.2 was used to compile all cases with

96 I.J. Bertolacci et al.

the -O2, -ftree-vectorize, and -funroll-loops
optimisation flags passed to the compiler.

The performance results are given in Table 1. The
timings are the total time the simulation was in the PPM
limiter function for each AMR level. Converting the
original code into a loop chain with an empty schedule
reduced the total time in the PPM limiter. Fusing the loop
nests further reduced the time for an overall reduction of
approximately 10%.

Table 1 The total time spent in the PPM limiter on each AMR
level for different schedules is shown in seconds

 Level 3 Level 2 Level 1

Original 7.46 2.27 0.57
No schedule 6.89 2.19 0.52
Fuse 6.66 2.08 0.5

4 Loop chain source-to-source translator
infrastructure

This section summarises how we translate C code annotated
with loop chain pragmas into C code that has been
transformed as specified in the loop chain pragma schedule.
The key contributions of our work are the loop chain
intermediate representation and the approach for converting
loop chain pragma schedule commands into affine loop
transformations. We first give an overview of the loop chain
translation pass, and then present the approach for

composing loop chain scheduling commands, and how it is
enabled by the LoopChainIR.

Two main components comprise the code
transformation infrastructure. The first, LoopChainIR, is an
internal representation specifically designed to represent
and support loop chain transformation. The second is a
prototype implementation of a transformation pass written
in the Rose compiler framework (Quinlan and Liao, 2011)
that utilises the LoopChain directives and LoopChainIR to
perform loop chain transformations. The transformation has
been designed as a single, discrete pass that could be used in
conjunction with other transformation passes within a
compiler.

4.1 Loop chain transformation pass

The transformation pass is implemented as a visitor in the
Rose framework and performs the actions required to go
from loopchain directives to transformed and integrated
code. The call to transform source code based on loop chain
pragmas can be inserted at any point during the optimisation
stage of compilation. The transformation results in a valid
AST and, therefore, can be followed by additional
transformations if desired. Figure 15 shows a larger
overview of process from frontend to backend. Figure 16
gives an overview of the LoopChain transformation process
and the flow of different ASTs and placement of various
components. The steps are numbered here to indicate their
relationship to Figure 16.

Figure 15 A high-level overview of the usage scenario of this prototype infrastructure

Note: The loop chaining pass is designed to fit seamlessly into the optimisation pipeline.

Figure 16 Overview of the process within the LoopChain transformation pass

 Using the loop chain abstraction to schedule across loops in existing code 97

The first step (1) is to parse the loopchain directives.
Parsing the nest annotation portion of the grammar
produces a series of LoopChainIR objects representing loop
nests and their domains, with associated iterator symbols
and loop bodies. Parsing the loopchain annotation
portion of the grammar collects those loop nests into a list,
ordered by their position within the chain. The next step (2)
is to take the list of loop nests and the scheduling directives
and generate code. Once the scheduling directives are
brought together with the entire loop chain, a series of
LoopChainIR transformation objects are created to
implement each of the scheduling directives. These
transformation objects create functions that, along with
representations of the loop nests, are passed to the
polyhedral code generation tool to generate the transformed
code. At this point, our code generator can generate its C
AST representing the transformed loop chain (3).

The last step is to take that AST, convert it into Rose’s
Sage AST (4) and inject it back into the source AST (5).
Importantly, the loop bodies from the original code must be
injected into the bodies of the generated code, and iterator
symbols from the original code matched to the iterators in
the generated loop code.

4.2 Forming affine transformations from scheduling
directives

LoopChainIR utilises integer set library (ISL) (Verdoolaege,
2010, 2016) to perform code transformation and
code generation. To accomplish the transformations,
LoopChainIR needs to provide ISL with representations of
loop nests’ initial iteration space, and the transformation
functions that will be applied.

Iteration spaces are represented as sets of integer tuples,
where each tuple is a single iteration of the whole loop nest.
Each position in the tuple is a dimension of the loop nest,
and the values are constrained by the loop iterator
constraints. For example, the iteration space of the first loop
nest from Figure 6 is {[i, j] | 1 ≤ i ≤ N 1 ≤ j ≤ N}. When
code is generated to represent an iteration space, it is
generated so that the sequence of iterations the code
produces preserve the lexicographic ordering of the iteration
space. Iteration [i1, i2, …, iD] is lexicographically before
iteration [j1, j2, …, jD] if (i1 < j1) (i1 = j1 i2 < j2) …
(i1 = j1 i2 = j2 …, iD < jD) (where represents a
Boolean ‘or’ and ^ represents Boolean ‘and’).

For ISL, LoopChainIR provides the initial iteration
spaces (or domains) as strings. For example, the strings
provided to ISL to represent the nests of Figure 6 are:

[N]->{ statement_1[i,j] : 1 <= i <= N and
1 <= j <= N };

[N]->{ statement_2[i,j] : 1 <= i <= N and
1 <= j <= N };

The syntax ‘[N]->‘ tells ISL that there exists a symbolic
constant N in the constraints. Additionally, the tuples of
these sets are given a statement macro that will be
generated to the code to represent all the statements in the

loop body. It appears similar to a function call:
statement_0(c0,c1).

Transformations are functions that map from one
iteration space to another. These are also provided to ISL as
strings. The first function that is created embeds all the
independent iteration spaces of the loop nests into a single
iteration space that comprises the entire loop chain:

{

 statement_1[i,j] -> [loop_idx, i, j,
stmt_idx] :

 loop_idx = 1 and stmt_idx = 1;

 statement_2[i,j] -> [loop_idx, i, j,
stmt_idx] :

 loop_idx = 2 and stmt_idx = 1;

}

Because of lexicographical ordering, all the iterations of the
first nest (statement_1) will come before any iteration
of the second nest (statement_2).

After this initial transformation, the iteration space
matches the input loop chain and new transformations can
be applied. These transformation functions do not need to
reference the statement macro. They only need to take in an
iteration space of the same dimensionality as the iteration
space output by the previous transformation function. All
the transformation functions are then composed together by
ISL and applied as one onto the original input iteration
spaces. No intermediate C code is created during the
transformation process.

An important concept in our framework is that an
iterator tuple is a concatenation of one or more subspaces. A
subspace itself is a tuple of zero or more ‘variable’ iterators,
and one ‘constant’ iterator. A variable iterator is an iterator
whose constraints may have more than one solution (e.g., 1
<= i <= N and 1 <= j <= N). A constant iterator is an
iterator whose constraints have exactly one solution (e.g.,
loop_idx = 1). The constant iterator is always the last
iterator of the subspace tuple. This constant iterator
indicates the position of the statement within the variable
iterators, and is how statements of fused loop bodies
maintain their order in the new loop.

In the running example, there are two subspaces
[loop_idx] and [i, j, stmt_idx]. In the [loop_idx]
subspace, there are no variable iterators, and loop_idx is
the constant iterator. In the [i, j, stmt_idx] subspace, i
and j are the variable iterators, and stmt_idx is the
constant iterator. The complete iterator tuple is the
concatenation of these two: [loop_idx] + [i, j,
stmt_idx] = [loop_idx, i, j, stmt_idx].

While subspaces are not provided to ISL, they are
tracked and used in LoopChainIR while synthesising the
ISL transformation functions. Subspaces allow
LoopChainIR to perform nested transformations, such as
nested tiling. All base level transformations are synthesised
with respect to one of the default subspaces, [loop_idx]
or [i, j, …, stmt_idx]. A base level tiling directive (such
as schedule(tile(…)…)) will create a transformation

98 I.J. Bertolacci et al.

function with respect to [i, j, …, stmt_idx], and
produces a new tiling subspace, [t_i, t_j, …,
t_stmt_idx].

For example, a 10 × 20 tiling of the running example
would be:

{

 [loop_idx, i, j, stmt_idx] ->

 [loop_idx, t_i, t_j, t_stmt_idx, i, j,
stmt_idx]:

 loop_idx = 1 and t_stmt_idx = 1 and
 T_i * 10 <= i_1 < (t_i + 1) * 10 and
 T_j * 20 <= i_2 < (t_j + 1) * 20;
 [loop_idx, i, j, stmt_idx] ->
 [loop_idx, t_i, t_j, t_stmt_idx, i, j,

stmt_idx]:

 loop_idx != 1 and t_stmt_idx = 1 and
 t_i = 1 and
 t_j = 1;
}

Any nested transformations, in this case, over or within
tiles, will be synthesised with respect to the appropriate
subspace. In this case, transformations over tiles will be
synthesised with respect to the new tiling subspace,
[t_i, t_j, t_stmt_idx], and transformations within
the tile will be synthesised with respect to the tiled
subspace, [i, j, stmt_idx].

4.3 Loop chain intermediate representation

LoopChainIR is a C++ library that provides abstractions, as
classes, of loop nests, loop domains, loop chains, code
generation ready schedules, and transformations to apply
these schedules. This library serves to encapsulate a loop
chain, provide developers with a way to package a loop
chain optimisation, and provide compiler developers with a
way to add loop chain optimisations into their optimisation
toolbox, while also being simple and independent of any
one compiler framework.

Figure 17 demonstrates the simplicity of using
LoopChainIR, building a representation of the code from
Figure 6, and then performing the equivalent of
schedule(fuse((0, 0), (1, 1)), tile((10,
20), serial, serial)). The output of this demo is
Figure 9. This code is stand alone, requiring only the
LoopChainIR and ISL libraries, allowing it to be used by
any compiler infrastructure.

LoopChainIR was designed so that the task of
describing a loop chain, and the task of transforming it, are
largely done by different components of the library. The
classes LoopChain, LoopNest, and RectangularDomain, are
used to describe the loop chain. The classes schedule,
subspace, and the transformation class hierarchy are used to
describe transformations on the loop chain. The schedule
class takes in a constructed LoopChain and produces the
initial ISL iteration spaces, subspaces, and transformation
function that are required for subsequent transformations to

be allowed. Transformation classes themselves can be
created separately from a schedule or from a LoopChain.
Until it is used by the schedule class, a transformation class
does not require any more information than the parameters
needed to describe the transformation, such as shift factors
and tiling extents. This decoupling allows different portions
of a compiler to synthesise the loop chain representation,
and the transformation representations separately.

Figure 17 In this demonstration of LoopChainIR, the schedule
fuse((0, 0), (1, 1)) tile((10, 15),
serial, serial) is applied to the Jacobi code
in Figure 6

// Create a loop chain. LoopNests will be appended to it.
LoopChain chain;

// Lower and Upper bounds, in dimensional order.
string lb[2] = {“1”, “1”};
string ub[2] = {“N”, “N”};
// Symbolic constants present in those bounds.
set<string> symbols = {“N”};

// Create a loop nest from a rectangular domain those bounds
form.
chain.append(LoopNest(RectangularDomain(lb, ub, 2,
symbols)));
// Create an identical loop nest.
chain.append(LoopNest(RectangularDomain(lb, ub, 2,
symbols)));

// LoopChain has been created, transformations can now be
done.

// Create a schedule object from that chain.
Schedule sched(chain);

// Create a shift transformation for loop 1, shifting both
dimensions by +1
Transformation* shift = new ShiftTransformation(1, {“1”,
“1”});

// Fuse loops 0 and 1 together.
Transformation* fuse = new FusionTransformation({0, 1});

// Tile both loops
TileTransformation :: TileMap extents;
// In LoopChainIR dimensions numbering begins at 0
// Size of tile in dimension 0.
extents [0] = “10”;
// Size of tile in dimension 1.
extents [1] = “20”;

 Using the loop chain abstraction to schedule across loops in existing code 99

Figure 17 In this demonstration of LoopChainIR, the schedule
fuse((0, 0), (1, 1)) tile((10, 15),
serial, serial) is applied to the Jacobi code
in Figure 6 (continued)

// In LoopChainIR loop numbering begins at 0
// Make tile transformation for loop 0.
Transformation* tile_0 = new TileTransformation(0, extents);

// Take the transformations and apply them, in order, to the
schedule.
sched.apply({tile_0, tile_1, shift, fuse});

// Hand-off to ISL to perform transformations and code
generation.
sched.codegenToFile(“output.c”);

Figure 18 Output found in “output.c” after running Figure 17

for (int c1 = 0; c1 <= floord(N + 1, 10); c1 += 1){
 for (int c2 = 0; c2 <= (N + 1) / 20; c2 += 1){
 for (int c4 = max(max(1, 10 * c1), –N + 20 * c2 + 1);
 c4 <= min(N + 1, 10 * c1 + 9); c4 += 1){
 for (int c5 = max(max(1 , 20 * c2), –N + c4 + 1);
 c5 <= min(min(N + 1, 20 * c2 + 19), N + c4 –

1); c5 += 1) {
 if (N >= c4 &&N >= c5)
 statement_0(c4, c5);
 if (c4 >= 2 && c5 >= 2)
 statement_1(c4 – 1, c5 – 1);
 }
 }
 }
}

The schedule class does the managerial work during the
transformation process. It keeps track of the subspaces that
transformation classes use to help construct their
constraints, and provides the input and output iterator tuples
that form the rest of the function.

5 Experimental results

The goal of our evaluation was to verify that the translation
tool produced correct results and that the generated source
code obtained similar performance to a more manual
approach. This was achieved by adding loop chain
pragmas to an application benchmark, miniflux-div. The
automatically generated code’s performance matched that of
the manual transformations. Additionally, previous work

demonstrated that large performance gains were achieved
through a combination of execution schedule optimisations
and space optimisations. The loop chain pragmas only
enable the execution schedule optimisations.

5.1 Application benchmark

The application benchmark selected for this experiment was
mini-flux-div, a partial implementation of the stencil
computations used in the PDE solvers of CFD simulations.
The original benchmark was developed to emulate the
behaviours typically found in applications developed within
the Chombo framework (Olschanowsky et al., 2014). The
current benchmark has been modified to remove
dependencies on Chombo, easing installation. The direct
software dependencies have been removed, however, the
pattern similarities were maintained. The mini-flux-div
benchmark is available as part of the Variations on a Theme
(Strout et al., 2017) benchmark repository.

A finite volume method is applied to discretise the
domains of the flux calculations. The fluid volume is
approximated by a number of boxes, each containing cells
arranged in the x, y, and z-directions. Each cell contains five
component values: density, energy, and the velocities in the
x, y, and z-directions. The flux is calculated on each face of
each cell, with the approximate solution accumulated from
the values of adjacent cells. A layer of ghost cells surrounds
each box.

The calculation is expressed as a series of nine loop
nests. The flux is calculated in the first two loop nests of
each group of three. In the first loop nest the calculations for
each dimension consist of three passes, first the initial
values of the five components are produced from previous
results (Flux1), in the next the values are updated with the
velocity component (Flux2), and finally, the results are
accumulated into adjacent cells (Diff). Each of the three
passes must iterate over each cell in all three dimensions,
for a total of nine loop nests. The five flux components are
calculated individually in the initial baseline program, such
that each nest contains only three loops rather than four. No
data dependences exist between boxes, allowing them to be
executed in parallel using OpenMP (box level parallelism).

The benchmark was tested over a 3D data domain,
sweeping both the number of boxes and the number of cells
per dimension in each box. The total cell count of
58,720,256 is constant for each experiment. The number of
threads was also swept from 1 to 28, i.e., the number of
cores in the experimental machine, to evaluate the effects of
box level parallelism. The baseline code has only box level
parallelism, with no inner loop transformations, and
contains a single velocity cache shared by the three
dimensions. A full cache, one that is written only once at
each location during execution is used in the experimental
program to enable loop transformations, otherwise
prohibited by data dependences.

100 I.J. Bertolacci et al.

Figure 19 Experimental results of the mini-flux-div micro-benchmark, (a) overall performance results (b) zoomed view of lower-right of
plot to highlight improvements (see online version for colours)

(a)

(b)

Table 2 Descriptions for each of the execution schedules

presented

Legend label Schedule Description

Baseline Series of loops Original
implementation with

expanded storage
allocation to enable

transformations.
Storage optimised Series of loops Original

implementation with
storage allocation

reduced.
Fuse Shifts align

Diff operations
Shift and fuse are
applied to baseline
implementation.

Tiled 8 × 8 × 8 Fuse then tile
Tiled 16 × 16 × 16 Fuse then tile
Tiled 32 × 32 × 32 Fuse then tile

The loop chain pragma was added around the loop nests
within the primary box loop, instructing the tool to apply the
various schedules. Additional loop chain pragmas
specifying domain and data dependence descriptors were
added to the nine inner loops for the three dimensions

calculated. For example, the Flux1 calculation reads data
from the previous time step, and writes to the flux cache.
Flux2 both reads from, then writes to the cache. In the
accumulation step (), data are read from cache, and written
to the current time step.

Several fused schedules are possible given the data
dependencies and domains involved in the mini-flux-div
benchmark. The domains of each pair of loop nests
calculating the flux are rectangular and the same shape.
Additionally, the data dependencies are point-to-point,
making a direct fuse possible. The domains for the Diff
operation are square and shifting the iteration space is
required for correctness. The first four loop domains are
flattened to be two-dimensional. There are two different
legal shift-fuse configurations. We manually confirmed that
the transformation tool produced the better performing of
the two configurations, with all of the writes to a single data
location contained within the same iteration and less control
flow overhead. This is the ‘shift and fuse’ example in
Figure 19. Three other schedules were evaluated, fused and
tiled, with three different sets of tile dimensions, 8 × 8 × 8,
16 × 16 × 16, and 32 × 32 × 32. The overall results are
summarised in Figure 19(a) and the different execution
schedules are summarised in Table 2.

 Using the loop chain abstraction to schedule across loops in existing code 101

5.2 Experimental setup

All experiments were run on a single node of a multi-node
cluster, R2 at Boise State University. Each node is
composed of a dual socket, Intel Xeon E5-2680 v4 CPU at
2.40 GHz clock frequency with 28 cores (14 per socket).
The cores include a 32 KB L1, 256 KB L2, and 35,840 K
L3 caches. The system contains 192GB of RAM split over 2
NUMA domains. GCC g++ version 4.8.5 was used to
compile all the benchmarks, with the -O4 optimisation flag
passed to the compiler.

5.3 Results

The shifted and fused code generated by the loop chain tool
outperforms the baseline code in a number of experimental
cases as the thread (core) count increases, most notably
when the number of cells is 32 or 64. This is an expected
result because the increased amount of storage required for
the baseline schedule. Figure 19(b) contains a zoomed view
of the performance results. The three fused and tiled
schedules did not outperform the baseline in any of the test
cases as in previous work (Olschanowsky et al., 2014),
because the temporary data footprints have not been
optimised.

The overall trend for the generated code to start out
slower than the baseline at low core counts and close the
gap as more cores are added is expected and worthy of
further explanation. The baseline code has a temporary
space optimisation that reuses the same data to
communicate values between the producer loop nests (the
Flux1 and Flux2 loops) and the consumer loop nest (the Diff
loops). The generated schedules use a maximal temporary
data scheme that will support any generated schedule. This
translates to a 3X increase in temporary data usage. The
baseline code was modified to include the full cache access
pattern that shares the same memory overhead, baseline in
Figure 19). The optimised schedules mostly outperform this
version for higher thread counts.

6 Related work

The need to manage data locality and parallelism in tandem
was first tackled by Kennedy and McKinley (1992). Their
work focused on trading off data locality and parallelism
within individual loop nests. In the 1990s the main issue
was false sharing and creating enough coarse grain
parallelism. Today’s machines demand a wider variety of
scheduling strategies, therefore the programmer might best
be helped by providing orthogonal abstractions for
specifying different schedulers either manually or with an
autotuner.

Other approaches to balancing data locality and
parallelism include domain-specific languages and
compilation passes, aggregation of computation in
tasks, and lower-level programmer-guided program
transformation. Loop chaining differentiates itself from
most of the previous work by removing complex tasks from

the domain of the user. For example, task aggregation
requires users to rewrite large portions of the code. Loop
chaining depends on the user annotating existing code with
summary data access information. This interface allows the
optimising compiler to make decisions not always possible
through data analysis. Optimisation scripting languages also
enable programmer control over the schedule as the loop
chain schedule commands do, however, the scripting
interfaces are lower level and more complex to enable the
expression of a broader range of transformations. The
advantage of loop chaining is that it enables the programmer
to have some control over the schedule in a loop chain while
still hiding the complexity, thus making transformations
across sequences of loops that share data more practical.

6.1 Domain-specific languages and transformations
for stencil computations

The loop chain abstraction is most relevant to pipelines of
stencil computations. Stencil computations are prevalent in
image processing pipelines and in partial differential
equation solvers. Thus there have been a number of
domain-specific languages developed for specifying stencil
computations (Tang et al., 2011; Christen et al., 2011;
Henretty et al., 2013; Stone and Strout, 2013). The main
issue with applying such approaches to existing code is that
they require significant rewriting to target the new DSL.

Embedded DSLs such as Halide (Ragan-Kelley et al.,
2013) in C++, PolyMage (Mullapudi et al., 2015) in Python,
and TiDA (Unat et al., 2016) in C++, make it more practical
to rewrite codes written in the embedded language.
Additionally, PolyMage and Halide were originally
developed for image processing pipelines, and the PDE
solvers we have been targeting have difficult issues such as
complex boundary conditions that make fitting the DSL
programming model difficult.

TiDA (Unat et al., 2016) is used to implement PDEs. In
TiDA, scientific computations such as the ones we target
are written in terms of computations over tiles of data. This
enables the compiler and runtime system to handle the data
layout, communication overlap, and tuning of tiling sizes.
This approach does require some rewriting, but modularises
the codes in a similar way to what many PDE solvers
already use: iteration over blocks of data. Their focus is on
the compile time and runtime scheduling of those blocks
while our focus is on the compile-time optimisation across
those blocks as shown in Olschanowsky et al. (2014).

In Zhou et al. (2012), compiler strategies for fusing and
hierarchically tiling across loops are presented. The
hierarchical tiling across loops transformation is one we
plan to incorporate into the loop chain schedule pragma.
The loop chain abstraction provides just the information
needed to apply this transformation in the compiler.

6.2 Programmer-guided code transformation

The idea of providing optimisation hints to the compiler
through directives is not a new one. The Intel compiler
(among others) offers a range of pragmas to aid in

102 I.J. Bertolacci et al.

optimising applications. For example, the following Fortran
code uses the loop count directive.

!DIR\$ LOOP COUNT (10000)

do i =1,m

b(i) = a(i) +1

enddo

It is likely that with this information the compiler will
schedule the code differently than it would without. The
directives available through the Intel compiler that are most
related to our work are the loop optimisation pragmas:
nofusion, unroll, and nounroll. There is not, however, a
pragma available that will simplify the data flow analysis
necessary for loop fusion and shifting in complex scientific
applications.

Other frameworks have been developed that allow the
programmer to apply more complex optimisations.
Frameworks such as Orio (Norris et al., 2007) involve
annotating the source code with instructions for
optimisations. POET (Yi, 2012), CHiLL (Hall et al., 2010),
and URUK (Girbal et al., 2006) each provide a scripting
language for optimisation. The optimisation scripts (or
recipes) can be placed within the source code or associated
with the source code from an external file.

6.3 Improving data locality by aggregating
computation into tasks

Various approaches have been developed to navigate the
trade-off between parallelism and locality. We leverage the
concept that developing a static aggregation or tiling
strategy followed by dynamic execution of a task graph
results in improved data locality within each tile and
concurrency, load balancing, and memory latency tolerance
between tiles. The key difference between previous work
and loop chaining is that the programmer’s responsibilities
are less while still having feasible program analysis
requirements.

The problem with having the programmer aggregate
computations into tasks is that the programmer has to make
some decision about task granularity across loops, and that
decision might not be portable. There are various ways to
aggregate computations into tasks: using an OpenMP
pragma and specifying the chunk size (Dagum and Menon,
1998), tiling the loop and having tile iterations be tasks
(Baskaran et al., 2009), iteration space slicing (Pugh and
Rosser, 1999; Beletska et al., 2011), and encapsulating tasks
within functions that have parameters indicating the task
granularity. The OmpSs work (Perez et al., 2008, Duran
et al., 2011) has the programmer indicate tasks by placing
pragmas on C function definitions with in/out information
about parameters and whether a function should be
considered higher priority. Many new programming models
(Duran et al., 2008; Chan et al., 2008; Andrade et al., 2009;
Huang et al., 2010; Chandramowlishwaran et al., 2010;
Cicotti and Baden, 2011; Augonnet et al., 2011) provide a

task graph abstraction and suggest that programmers rewrite
existing code with sequences of parallel loops in the form of
task graphs instead. Iteration space slicing techniques (Pugh
and Rosser, 1999; Beletska et al., 2011) that find sets of
iterations across loops by doing transitive closure with data
dependence relation information help automate task
aggregation but depend heavily on precise and
interprocedural data dependence analysis.

Once a task graph has been created, there are various
ways of optimising the performance of the task graph. In
Vydyanathan et al. (2009), the authors provide algorithms
for scheduling task graphs using a mix of task and data
parallelism. Within each task have data parallelism. In
Virouleau et al. (2016), the authors propose a new tag for
OpenMP that allows the user to provide locality information
through an affinity tag. Other work determines the data
locality between threads when scheduling tasks and uses
this to control thread affinity (Terboven et al., 2008; Song
et al., 2009; Meng et al., 2010).

The loop chain abstraction can complement any and all
of these approaches by providing the needed information for
creating tasks to the compiler and then using the appropriate
task graph-based system as a backend. An issue we do not
address in the proposed work is generating distributed
memory code. Some aggregation approaches do provide
distributed memory implementations (Cicotti and Baden,
2011; Schlimbach et al., 2013).We are tackling the problem
of providing effective shared memory parallelism for
individual MPI processes.

7 Limitations

There are currently some conceptual and practical
limitations of this work.

7.1 Parameterising transformations

A significant amount of effort has gone into parameterising
code generation for transformations such as tiling
(Renganarayana et al., 2012; Hartono et al., 2009;
Renganarayanan et al., 2007). The foundation has been set
to be able to move forward with this work, however, it is
not supported in our current tool chain. A specific example
of this is tiling. It is common to sweep through a set of tile
sizes to determine the best performing configuration.
However, with our current configuration each tile size needs
to be determined at compilation time. It is preferable to
change this at runtime.

7.2 Wavefront transformation and automatic skew
determination

A method for determining the skew factor required to
legally parallelise loops after fusion is described in
Section 2.4. However, this is not currently implemented in
our transformation framework.

 Using the loop chain abstraction to schedule across loops in existing code 103

8 Conclusions

There exist programming models, languages, and
abstractions that can expose and exploit parallelism in
applications. However, exploiting maximum parallelism
without respecting data locality results in poor performance
through excessive memory traffic. We have presented:

1 a novel programming abstraction though OpenMP style
pragmas

2 a software framework to describe and transform loop
chains.

These tools can provide developers of new applications, and
maintainers of legacy applications, with the ability to
identify and transform loop chains in order to increase
arithmetic intensity by simultaneously increasing both
parallelism and data locality.

Further, we have created a prototype code
transformation pass and used it to demonstrate the potential
of these tools to effectively transform simple benchmarks.
Our performance results are encouraging. We believe that
this programming abstraction can work reasonably well for
developers looking to increase the performance of their
application without requiring them to overhaul their codes.

Acknowledgements

This work was supported by a National Science Foundation
grant NSF CCF-1422725.

References
Adams, M., Colella, P., Graves, D.T., Johnson, J.N.,

Johansen, H.S., Keen, N.D., Ligocki, T.J., Martin, D.F.,
McCorquodale, P.W., Modiano, D., Schwartz, P.O.,
Sternberg, T.D. and Straalen, B.V. (2014) Chombo Software
Package for AMR Applications – Design Document,
Technical Report LBNL-6616E, Lawrence Berkeley National
Laboratory.

Andrade, D., Fraguela, B.B., Brodman, J. and Padua, D. (2009)
‘Task-parallel versus data parallel library-based programming
in multicore systems’, in Proceedings of the 2009 17th
Euromicro International Conference on Parallel, Distributed
and Network-based Processing (PDP), IEEE Computer
Society, Washington, DC, USA, pp.101–110.

Augonnet, C., Thibault, S., Namyst, R. and Wacrenier, P-A.
(2011) ‘StarPU: a unified platform for task scheduling on
heterogeneous multicore architectures’, Concurrency and
Computation: Practice and Experience, Special Issue:
Euro-Par 2009, Vol. 23, pp.187–198.

Baskaran, M.M., Vydyanathan, N., Bondhugula, U.K.R.,
Ramanujam, J., Rountev, A. and Sadayappan, P. (2009)
‘Compiler-assisted dynamic scheduling for effective
parallelization of loop nests on multicore processors’,
PPOPP, Vol. 44, No. 4, pp.219–228.

Beletska, A., Bielecki, W., Cohen, A., Palkowski, M. and
Siedlecki, K. (2011) ‘Coarsegrained loop parallelization:
Iteration space slicing vs. affine transformations’, Parallel
Computing, Vol. 37, No. 8, pp.479–497.

Chan, E., Van Zee, F.G., Bientinesi, P., Quintana-Orti, E.S.,
Quintana-Orti, G. and van de Geijn, R. (2008) ‘Supermatrix:
a multithreaded runtime scheduling system for
algorithms-by-blocks’, in Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPOPP), PPoPP ‘08, ACM, New York, NY,
USA, pp.123–132.

Chandramowlishwaran, A., Knobe, K. and Vuduc, R.W. (2010)
‘Performance evaluation of concurrent collections on
high-performance multicore computing systems’, in
Proceedings of the IEEE International Parallel and
Distributed Processing Symposium (IPDPS).

Christen, M., Schenk, O. and Burkhart, H. (2011) ‘Patus: a code
generation and autotuning framework for parallel iterative
stencil computations on modern microarchitectures’, in
Proceedings of the IEEE International Parallel and
Distributed Processing Symposium (IPDPS).

Cicotti, P. and Baden, S. (2011) ‘Latency hiding and performance
tuning with graph-based execution’, in 2011 First Workshop
on Data-Flow Execution Models for Extreme Scale
Computing (DFM), pp.28–37.

Dagum, L. and Menon, R. (1998) ‘Openmp: an industry-standard
API for shared-memory programming’, IEEE Computational
Science & Engineering, Vol. 5, No. 1, pp.46–55.

Duran, A., Ayguadé, E., Badia, R.M., Labarta, J., Martinell, L.,
Martorell, X. and Planas, J. (2011) ‘Ompss: a proposal for
programming heterogeneous multi-core architectures’,
Parallel Processing Letters, Vol. 21, No. 2, pp.173–193.

Duran, A., Perez, J.M., Ayguadé, E., Badia, R.M. and Labarta, J.
(2008) ‘Extending the OpenMP tasking model to allow
dependent tasks’, in Proceedings of the 4th International
Conference on OpenMP in a Newera of Parallelism,
IWOMP’08, Springer-Verlag, Berlin, Heidelberg,
pp.111–122.

Girbal, S., Vasilache, N., Bastoul, C., Cohen, A., Parello, D.,
Sigler, M. and Temam, O. (2006) ‘Semi-automatic
composition of loop transformations for deep parallelism and
memory hierarchies’, International Journal of Parallel
Programming, Vol. 34, No. 3, pp.261–317.

Grosser, T., Cohen, A., Kelly, P.H., Ramanujam, J.,
Sadayappan, P. and Verdoolaege, S. (2013) ‘Split tiling for
GPUS: automatic parallelization using trapezoidal tiles’, in
Proceedings of the 6th Workshop on General Purpose
Processor Using Graphics Processing Units, ACM,
pp.24–31.

Hall, M., Chame, J., Chen, C., Shin, J., Rudy, G. and Khan, M.M.
(2010) ‘Loop transformation recipes for code generation and
auto-tuning’, in Languages and Compilers for Parallel
Computing, Vol. 5898, pp.50–64, Springer, Berlin,
Heidelberg.

Hartono, A., Baskaran, M.M., Bastoul, C., Cohen, A.,
Krishnamoorth, S., Norris, B., Ramanujam, J. and
Sadayappan, P. (2009) ‘PrimeTile: a parametric multi-level
tiler for imperfect loop nests’, in Proceedings of the 23rd
International Conference on Supercomputing, 8–12 June,
IBM T.J. Watson Research Center, Yorktown Heights, NY,
USA.

Henretty, T., Veras, R., Franchetti, F., Pouchet, L-N.,
Ramanujam, J. and Sadayappan, P. (2013) ‘A stencil compiler
for short-vector simd architectures’, in Proceedings of the
27th International ACM Conference on International
Conference on Supercomputing, ICS ‘13, ACM, New York,
NY, USA, pp.13–24.

104 I.J. Bertolacci et al.

Huang, M., Narayana, V.K., Simmler, H., Serres, O.
and El-Ghazawi, T. (2010) ‘Reconfiguration and
communication-aware task scheduling for high-performance
reconfigurable computing’, ACM Trans. Reconfigurable
Technol. Syst., Vol. 3, No. 4, pp.20:1–20:25.

Kennedy, K. and McKinley, K.S. (1992) ‘Optimizing for
parallelism and data locality’, in Proceedings of the 6th
International Conference on Supercomputing, ICS ‘92, ACM,
New York, NY, USA, pp.323–334.

Krieger, C.D., Strout, M.M., Olschanowsky, C., Stone, A.,
Guzik, S., Gao, X., Bertolli, C., Kelly, P.H., Mudalige, G.,
Straalen, B.V. and Williams, S. (2013) ‘Loop chaining: a
programming abstraction for balancing locality and
parallelism’, in Proceedings of the 18th International
Workshop on High-Level Parallel Programming Models and
Supportive Environments (HIPS).

Meng, J., Sheaffer, J. and Skadron, K. (2010) ‘Exploiting
inter-thread temporal locality for chip multithreading’, in
IPDPS.

Mullapudi, R.T., Vasista, V. and Bondhugula, U. (2015)
‘Polymage: automatic optimization for image processing
pipelines’, in Proceedings of the Twentieth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ‘15, ACM,
New York, NY, USA, pp.429–443.

Norris, B., Hartono, A. and Gropp, W. (2007) ‘Annotations for
productivity and performance portability’, in Petascale
Computing: Algorithms and Applications, Computational
Science, pp.443–462, Chapman & Hall/CRC Press, Taylor
and Francis Group, Preprint ANL/MCS-P1392-0107 [online]
http://www.mcs.anl.gov/uploads/cels/papers/P1392.pdf
(accessed 10 July 2017).

Olschanowsky, C., Strout, M.M., Guzik, S., Loffeld, J. and
Hittinger, J. (2014) ‘A study on balancing parallelism, data
locality, and recomputation in existing PDE solvers’, in The
IEEE/ACM International Conference for High Performance
Computing, Networking, Storage and Analysis (SC).

Perez, J., Badia, R. and Labarta, J. (2008) ‘A dependency-aware
task-based programming environment for multi-core
architectures’, in Proceedings of the IEEE International
Conference on Cluster Computing.

Pugh, W. and Rosser, E. (1999) ‘Iteration space slicing for
locality’, in Proceedings of the 12th International Workshop
on Languages and Compilers for Parallel Computing, LNCS,
Springer-Verlag, London, UK, Vol. 1863, pp.164–184.

Quinlan, D. and Liao, C. (2011) ‘The rose source-to-source
compiler infrastructure’, in Cetus Users and Compiler
Infrastructure Workshop, in Conjunction with PACT 2011.

Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F. and
Amarasinghe, S. (2013) ‘Halide: a language and compiler for
optimizing parallelism, locality, and recomputation in image
processing pipelines’, in Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ‘13, ACM, New York, NY, USA,
pp.519–530.

Renganarayana, L., Kim, D., Strout, M.M. and Rajopadhye, S.
(2012) ‘Parameterized loop tiling’, Transactions on
Programming Languages and Systems (TOPLAS), Vol. 34,
No. 1, pp.3:1–3:41.

Renganarayanan, L., Kim, D., Rajopadhye, S. and Strout, M.M.
(2007) ‘Parameterized tiled loops for free’, in Proceedings of
the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI).

 Schlimbach, F., Brodman, J. and Knobe, K. (2013) ‘Concurrent
collections on distributed memory theory put into practice’, in
2013 21st Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP),
pp.225–232.

Song, F., Moore, S. and Dongarra, J. (2009) ‘Analytical modeling
and optimization for affinity based thread scheduling on
multicore systems’, in IEEE International Conference on
Cluster Computing and Workshops, 2009, CLUSTER ‘09,
pp.1–10.

Stone, A. and Strout, M.M. (2013) ‘Programming abstractions to
separate concerns in semiregular grids’, in Proceedings of the
27th International Conference on Supercomputing (ICS).

Strout, M., Olschanowsky, C., Bertolacci, I., Willer, S., Gurses, E.
and Patil, R. (2017) Variations on a Theme [online]
https://github.com/CompOpt4Apps/VariationsOnATheme
(accessed 10 July 2017).

Tang, Y., Chowdhury, R.A., Kuszmaul, B.C., Luk, C-K. and
Leiserson, C.E. (2011) ‘The pochoir stencil compiler’, in
Proceedings of the 23rd ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ‘11, ACM, New York,
NY, USA, pp.117–128.

Terboven, C., Mey, D., Schmidl, D., Jin, H. and Reichstein, T.
(2008) ‘Data and thread affinity in OpenMP programs’, in
Proceedings of the 2008 Workshop on Memory Access on
Future Processors (MAW), ACM, New York, NY, USA,
pp.377–384.

Unat, D., Nguyen, T., Zhang, W., Farooqi, M.N., Bastem, B.,
Michelogiannakis, G., Almgren, A. and Shalf, J. (2016)
‘Tida: high-level programming abstractions for data locality
management’, in ISC High Performance.

Verdoolaege, S. (2010) ‘ISL: an integer set library for the
polyhedral model’, Mathematical Software – ICMS 2010,
pp.299–302 [online] http://link.springer.com/chapter/10.1007/
978-3-642-15582-6_49 (accessed 10 July 2017).

Verdoolaege, S. (2016) Integer Set Library [online]
http://isl.gforge.inria.fr/ (accessed 10 July 2017).

Virouleau, P., Roussel, A., Broquedis, F., Gautier, T., Rastello, F.
and Gratien, J-M. (2016) ‘Description, implementation and
evaluation of an affinity clause for task directives’, in
‘IWOMP 2016’, IWOMP 2016 – LLCS, Nara, Japan,
Vol. 9903 [online] https://hal.inria.fr/hal-01343442 (accessed
10 July 2017).

Vydyanathan, N., Krishnamoorthy, S., Sabin, G.M.,
Catalyurek, U.V., Kurc, T., Sadayappan, P. and Saltz, J.H.
(2009) ‘An integrated approach to locality-conscious
processor allocation and scheduling of mixed-parallel
applications’, IEEE Transactions on Parallel and Distributed
Systems, Vol. 20, pp.1158–1172.

Yi, Q. (2012) ‘Poet: a scripting language for applying
parameterized source-to-source program transformations’,
Software: Practice and Experience, Vol. 42, No. 6,
pp.675–706 [online] http://dx.doi.org/10.1002/spe.1089
(accessed 10 July 2017).

Zhou, X., Giacalone, J-P., Garzarán, M.J., Kuhn, R.H., Ni, Y. and
Padua, D. (2012) ‘Hierarchical overlapped tiling’, in
Proceedings of the Tenth International Symposium on Code
Generation and Optimization, CGO ‘12, ACM, New York,
NY, USA, pp.207–218.

