

Chapter 7

Arrays

Goals

This chapter introduces the Java array for storing collections of many objects. Individual elements are

referenced with the Java subscript operator []. After studying this chapter you will be able to

 declare and use arrays that can store reference or primitive values

 implement methods that perform array processing

7.1 The Java Array Object
Java array objects store collections of elements. They allow a large number of elements to be

conveniently maintained together under the same name. The first element is at index 0 and the second is

at index 1. Array elements may be any one of the primitive types, such as int or double. Array elements

can also be references to any object.

 The following code declares three different arrays named balance, id, and tinyBank. It also

initializes all five elements of those three arrays. The subscript operator [] provides access to individual

array elements.

// Declare two arrays that can store up to five elements each
double[] balance = new double[5];
String[] id = new String[5];

// Initialize the array of double values
balance[0] = 0.00;
balance[1] = 111.11;
balance[2] = 222.22;
balance[3] = 333.33;
balance[4] = 444.44;

// Initialize all elements in an array of references to String objects
id[0] = "Bailey";
id[1] = "Dylan";

id[2] = "Hayden";
id[3] = "Madison";
id[4] = "Shannon";

The values referenced by the arrays can be drawn like this, indicating that the arrays balance, and id,

store collections. balance is a collection of primitive values; id is a collection of references to String

objects.

84

balance[0] 0.0 id[0] "Bailey"

balance[1] 1.11 id[1] "Dylan"

balance[2] 2.22 id[2] "Hayden"

balance[3] 3.33 id[3] "Madison"

balance[4] 4.44 id[4] "Shannon"

The two arrays above were constructed using the following general forms:

General Form: Constructing array objects

type[] array-name = new type [capacity];

class-name[] array-name = new class-name [capacity];

 type specifies the type (either a primitive or reference type) of element that will be stored in the

array.

 array-name is any valid Java identifier. With subscripts, the array name can refer to any and all

elements in the array.

 capacity is an integer expression representing the maximum number of elements that can be

stored in the array. The capacity is always available through a variable named length that is

referenced as array-name.length.

Example: array declarations

 int[] test = new int[100]; // Store up to 100 integers

 double[] number = new double[10000]; // Store up to 10000 numbers

 String[] name = new String[500]; // Store up to 500 strings

 BankAccount[] customer = new BankAccount[1000]; // 1000 BankAccount references

Accessing Individual Elements

Arrays support random access. The individual array elements can be found through subscript notation. A

subscript is an integer value between [and] that represents the index of the element you want to get to.

The special symbols [and] represent the mathematical subscript notation. So instead of x0, x1, and xn-1,

Java uses x[0], x[1], and x[n-1].
General Form: Accessing one array element

array-name [index] // Index should range from 0 to capacity - 1

The subscript range of a Java array is an integer value in the range of 0 through its capacity - 1. Consider

the following array named x.

 double[] x = new double[8];

The individual elements of x may be referenced using the indexes 0, 1, 2, … 7. If you used -1 or 8 as an

index, you would get an ArrayIndexOutOfBoundsException. This code assigns values to the first two

array elements:

 // Assign new values to the first two elements of the array named x:
 x[0] = 2.6;
 x[1] = 5.7;

Java uses zero-based indexing. This means that the first array element is accessed with index 0; the same

indexing scheme used with String. The index 0 means the first element in the collection. With arrays, the

first element is found in subscript notation as x[0]. The fifth element is accessed with index 4 or with

85

Chapter 7: Arrays

subscript notation as x[4]. This subscript notation allows individual array elements to be displayed, used

in expressions, and modified with assignment and input operations. In fact, you can do anything to an

individual array element that can be done to a variable of the same type. The array is simply a way to

package together a collection of values and treat them as one.

 The familiar assignment rules apply to array elements. For example, a String literal cannot be

assigned to an array element that was declared to store double values.

 // ERROR: x stores numbers, not strings
 x[2] = "Wrong type of literal";

Since any two double values can use the arithmetic operators, numeric array elements can also be used in

arithmetic expressions like this:

 x[2] = x[0] + x[1]; // Store 8.3 into the third array element

Each array element is a variable of the type declared. Therefore, these two integers will be promoted to

double before assignment.

 x[3] = 12; // Stores 12.0
 x[4] = 9;

Arrays of primitive double values are initialized to a default value of 0.0 (an array of ints have elements

initialized to 0, arrays of objects to null). The array x originally had all 8 elements to 0.0. After the five

assignments above, the array would look like this.

Element

 Reference

Value
x[0] 2.6

x[1] 5.7

x[2] 8.3

x[3] 12.0

x[4] 9.0

x[5] 0.0

x[6] 0.0

x[7] 0.0

The value of an array is a reference to memory where elements are stored in a contiguous (next to each

other) fashion. Here is another view of an array reference value and the elements as the data may exist in

the computer's memory.

 x

2.6 5.7 8.3 12.0 9.0 0.0 0.0 0.0 0.0

Java checks array indexes to ensure that they are within the proper range of 0 through capacity - 1. The

following assignment results in an exception being thrown. The program usually terminates prematurely

with a message like the one

 x[8] = 4.5; // This out-of-range index causes an exception

The program terminates prematurely (the output shows the index, which is 8 here).

 java.lang.ArrayIndexOutOfBounds exception: 8

86

This might seem like a nuisance. However, without range checking, such out-of-range indexes could

destroy the state of other objects in memory and cause difficult-to-detect bugs. More dramatically, your

computer could “hang” or “crash.” Even worse, with a workstation that runs all of the time, you could get

an error that affects computer memory now, but won’t crash the system until weeks later. However, in

Java, you get the more acceptable occurrence of an ArrayIndexOutOfBounds exception while you are

developing the code.

Self-Check

Use this initialization to answer the questions that follow:

 int[] arrayOfInts = new int[100];

7-1 What type of element can be properly stored as elements in arrayOfInts?

7-2 How many integers may be properly stored as elements in arrayOfInts?

7-3 Which integer is used as the indearrayOfInts to access the first element in arrayOfInts?

7-4 Which integer is used as the indearrayOfInts to access the last element in arrayOfInts?

7-5 What is the value of arrayOfInts[23]?

7-6 Write code that stores 78 into the first element of arrayOfInts.

7-7 What would happen when this code executes? ArrayOfInts[100] = 100;

7.2 Array Processing with Determinate Loops
Programmers must frequently access consecutive array elements. For example, you might want to display

all of the meaningful elements of an array containing test scores. The Java for loop provides a convenient

way to do this.

int[] test = new int[10];
test[0] = 91;
test[1] = 82;
test[2] = 93;
test[3] = 65;
test[4] = 74;

for (int index = 0; index < 5; index++) {
 System.out.println("test[" + index + "] == " + test[index]);
}

Output

test[0] == 91
test[1] == 82
test[2] == 93
test[3] == 65
test[4] == 74

Changing the int variable index from 0 through 4 provide accesses to all meaningful elements in the

array referenced by test. This variable index acts both as the loop counter and as an array index inside

the for loop (test[index]). With index serving both roles, the specific array element accessed as

test[index] depends on the value of index. For example, when index is 0, test[index] references

the first element in the array named test. When index is 4, test[index] references the fifth element.

Here is a more graphical view that shows the changing value of index.

87

Chapter 7: Arrays

test index 0, 1, 2, 3, 4, 5 loop terminates at 5

91 82 93 65 74 0 0 0 0 0

Shortcut Array Initialization and the length Variable

Java also provides a quick and easy way to initialize arrays without using new or the capacity.

 int[] test = { 91, 82, 93, 65, 74 };

The compiler sets the capacity of test to be the number of elements between { and }. The first value (91)

is assigned to test[0], the second value (82) to test[1], and so on. Therefore, this shortcut array

creation and assignment on one line are equivalent to these six lines of code for a completely filled array

(no meaningless values).

 int[] test = new int[5];
 test[0] = 91;
 test[1] = 82;
 test[2] = 93;
 test[3] = 65;
 test[4] = 74;

This shortcut can be applied to all types.

 double x[] = { 0.0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6 };

 char[] vowels = { 'a', 'e', 'i', 'o', 'u' };

 String[] names = { "Tyler", "Angel", "Justice", "Reese" };

 BankAccount[] accounts = { new BankAccount("Tyler", 100.00),
 new BankAccount("Angel", 200.00),
 new BankAccount("Justice", 300.00),
 new BankAccount("Reese", 400.00)
 };

The length variable stores the capacity of an array. It is often used to avoid out-of-range index

exceptions. For example, the index range of the array x is 0 through x.length - 1. The capacity is

referenced as the array name, a dot, and the variable named length. Do not use () after length as you

would in a String message.

 // Assert the capacities of the four arrays above
 assertEquals(7, x.length);
 assertEquals(5, vowels.length);
 assertEquals(4, names.length);
 assertEquals(4, accounts.length);

Argument/Parameter Associations

At some point, you will find it necessary to pass an array to another method. In this case, the parameter

syntax requires [] and the correct type to mark the parameter can be matched to the array argument.

General Form: Array parameters

type[] array-reference

Example Array Parameters in method headings
 public static void main(String[] args)
 public double max(double[] x)
 public boolean equal(double[] array1, double[] array2)

This allows array references to be passed into a method so that method has access to all elements in the

array. For example, this method inspects the meaningful array elements (indexed from 0 through n - 1) to

find the smallest value and return it.

88

 public int min(int[] array, int n) {
 // Assume the first element is the smallest
 int smallest = array[0];
 // Inspect all other meaningful elements in array[1] through array[n-1]
 for (int index = 1; index < n; index++) {
 if (array[index] < smallest)
 smallest = array[index];
 }
 return smallest;
 }

An array often stores fewer meaningful elements than its capacity. Therefore, the need arises to store the

number of elements in the array that have been given meaningful values. In the previous code, n was used

to limit the elements being referenced. Only the first five elements were considered to potentially be the

smallest. Only the first five should have been considered. Without limiting the search to the meaningful

elements (indexed as 0 through n - 1), would the smallest be 65 or would it be one of the 0s stored as one

of the fifteen elements at the end that Java initialized to the default value of 0?

 Consider the following test method that accidentally passes the array capacity as test.length (20)

rather than the number of meaningful elements in the array (5).

 @Test
 public void testMin() {
 int[] test = new int[20];
 test[0] = 91;
 test[1] = 82;
 test[2] = 93;
 test[3] = 65;
 test[4] = 74;
 assertEquals(65, min(test, test.length)); // Should be 5

 }

The assertion fails with this message:

 java.lang.AssertionError: expected:<65> but was:<0>

If an array is "filled" with meaningful elements, the length variable can be used to process the array.

However, since arrays often have a capacity greater than the number of meaningful elements, it may be

better to use some separate integer variable with a name like n or size.

Messages to Individual Array Elements

The subscript notation must be used to send messages to individual elements. The array name must be

accompanied by an index to specify the particular array element to which the message is sent.

General Form: Sending messages to individual array elements

array-name [index].message-name(arguments)

The index distinguishes the specific object the message is to be sent to. For example, the uppercase

equivalent of id[0] (this element has the value "Dylan") is returned with this expression:

names[0].toUpperCase(); // The first name in an array of Strings

The expression names.toUpperCase() is a syntax error because it attempts to find the uppercase version

of the entire array, not one of its String elements. The toUpperCase method is not defined for standard

Java array objects. On the other hand, names[0] does understand toUpperCase since names[0] is

indeed a reference to a String. names is a reference to an array of Strings.

 Now consider determining the total of all the balances in an array of BankAccount objects. The

following test method first sets up a miniature database of four BankAccount objects. Note: A constructor

call—with new—generates a reference to any type of object. Therefore this assignment

89

Chapter 7: Arrays

// A constructor first constructs an object, then returns its reference

account[0] = new BankAccount("Hall", 50.00);

first constructs a BankAccount object with the ID "Hall" and a balance of 50.0. The reference to this

object is stored in the first array element, account[0].

 @Test
 public void testAssets() {
 BankAccount[] account = new BankAccount[100];
 account[0] = new BankAccount("Hall", 50.00);
 account[1] = new BankAccount("Small", 100.00);
 account[2] = new BankAccount("Ewall", 200.00);
 account[3] = new BankAccount("Westphall", 300.00);
 int n = 4;
 // Only the first n elements of account are meaningful, 96 are null
 double actual = assets(account, n);
 assertEquals(650.00, actual, 0.0001);
 }

The actual return value from the assets method should be the sum of all account balances indexed from

0..n-1 inclusive, which is expected to be 650.0.

 // Accumulate the balance of n BankAccount objects stored in account[]
 public double assets(BankAccount[] account, int n) {
 double result = 0.0;
 for (int index = 0; index < n; index++) {
 result += account[index].getBalance();
 }
 return result;
 }

Modifying Array Arguments

Consider the following method that adds the incValue to every array element. The test indicates that

changes to the parameter x also modifies the argument intArray.

 @Test
 public void testIncrementBy() {
 int[] intArray = { 1, 5, 12 };
 increment(intArray, 6);
 assertEquals(7, intArray[0]); // changing the elements of parameter x
 assertEquals(11, intArray[1]); // in increment is the same as changing
 assertEquals(18, intArray[2]); // intArray in this test method
 }

 public void increment(int[] x, int incValue) {
 for (int index = 0; index < x.length; index++)
 x[index] += incValue;

 }

To understand why this happens, consider the characteristics of reference variables.

 A reference variable stores the location of an object, not the object itself. By analogy, a reference

variable is like the address of a friend. It may be a description of where your friend is located, but it is not

your actual friend. You may have the addresses of many friends, but these addresses are not your actual

friends.

 When the Java runtime system constructs an object with the new operator, memory for that object gets

allocated somewhere in the computer's memory. The new operation then returns a reference to that newly

constructed object. The reference value gets stored into the reference variable to the left of =. For

example, the following construction stores the reference to a BankAccount "Chris" 0.0

chris

 BankAccount chris = new BankAccount("Chris", 0.00);

90

A programmer can now send messages to the object by way of the reference value stored in the reference

variable named chris. The memory that holds the actual state of the object is stored elsewhere. Because

you will use the reference variable name for the object, it is intuitive to think of chris as the object.

However, chris is actually the reference to the object, which is located elsewhere.

 The following code mimics the same assignments that were made to the primitive variables above.

The big difference is that the deposit message sent to chris actually modifies kim. This happens

because both reference variables chris and kim—refer to the same object in memory after the

assignment kim = chris. In fact, the object originally referred to by the reference variable named kim

is lost forever. Once the memory used to store the state of an object no longer has any references, Java’s

garbage collector reclaims the memory so it can be reused later to store other new objects. This allows

your computer to recycle memory that is no longer needed.

 BankAccount chris = new BankAccount("Chris", 0.00);
 BankAccount kim = new BankAccount("Kim", 100.00);
 kim = chris;

 // The values of the object were not assigned.
 // Rather, the reference to chris was assigned to the reference variable kim.
 // Now both reference variables refer to the same object.
 System.out.println("Why does a change to 'chris' change 'kim'?");
 chris.deposit(555.55);
 System.out.println("Kim's balance was 0.00, now it is " + kim.getBalance());

Output

Why does a change to 'chris' change 'kim'?
Kim's balance was 0.00, now it is 555.55

Assignment statements copy the values to the right of = into the variable to the left of =. When

the variables are primitive number types like int and double, the copied values are numbers.

However, when the variables are references to objects, the copied values are the locations of the

objects in memory as illustrated in the following diagram.

91

Chapter 7: Arrays

After the assignment kim = chris, kim and chris both refer to the same object in memory. The state of

the object is not assigned. Intead, the reference to the object is assigned. A message to either reference

variable (chris or kim) accesses or modifies the same object, which now has the state of “Chris” and

555.55. An assignment of a reference value to another reference variable of the same type does not

change the object itself. The state of an object can only be changed with messages designed to modify the

state.

 The big difference is that the deposit message to chris actually modified kim. This happens

because both reference variables—chris and kim—refer to the same object in memory after the

assignment kim = chris.

 The same assignment rules apply when an argument is assigned to a parameter. In this method and

test, chris and kim both refer to the same object.

 @Test
 public void testAddToBalance() {
 BankAccount kim = new BankAccount("Chris", 0.00);
 assertEquals(0.0, kim.getBalance(), 0.0001);
 increment(kim);
 assertEquals(555.55, kim.getBalance(), 1e-14);
 }

 public void increment(BankAccount chris) {
 chris.deposit(555.55);
 }

Java has one argument/parameter association. It is called pass by value. When an argument is assigned to

a parameter, the argument’s value is copied to the parameter. When the argument is a primitive type such

as int or double, the copied values are primitive numeric values or char values. No method can change

the primitive arguments of another method. However, when an object reference is passed to a method, the

value is a reference value. The argument is the location of the object in computer memory.

 At that moment, the parameter is an alias (another name) for the argument. Two references to the

same object exist. The parameter refers to the same object as the argument. This means that when a

method modifies the parameter, the change occurs in the object referenced by the argument.

 In this code that reverses the array elements, three reference variables reference the array of ints

constructed in the test method.

Method Array Reference

testReverse intArray

reverse x

swap a

 2 4 6 8 10

@Test
public void testReverse() {
 int[] intArray = { 2, 4, 6, 8, 10 };
 reverse(intArray);
 assertEquals(10, intArray[0]); // was 2
 assertEquals(8, intArray[1]); // was 4
 assertEquals(6, intArray[2]); // was 6
 assertEquals(4, intArray[3]); // was 8
 assertEquals(2, intArray[4]); // was 10
}

92

// Reverse the array elements so x[0] gets exchanged with x[x.length-1],

// x[1] with x[x.length-2], x[2] with x[x.length-3], and so on.
public void reverse(int[] x) {
 int leftIndex = 0;
 int rightIndex = x.length - 1;
 while (leftIndex < rightIndex) {
 swap(x, leftIndex, rightIndex);
 leftIndex++;
 rightIndex--;
 }
}

// Exchange the two integers in the specified indexes
// inside the array referenced by a.
private void swap(int[] a, int leftIndex, int rightIndex) {
 int temp = a[leftIndex]; // Need to store a[leftIndex] before
 a[leftIndex] = a[rightIndex]; // a[leftIndex] gets erased in this assignment
 a[rightIndex] = temp;
}

Self-Check
7-8 Given the small change of < to <= in the for loop, describe what would happen when

this method is called where the number of meaningful elements is n.

 // Accumulate the balance of n BankAccount objects stored in account[]
 public double assets(BankAccount[] account, int n) {
 double result = 0.0;
 for (int index = 0; index <= n; index++) {
 result += account[index].getBalance();
 }
 return result;
 }

7-9 Write method sameEnds to return true if the integer in the first index equals the integer

in the last index. This code must compile and the assertions must pass.

 @Test public void testSameEnds() {
 int[] x1 = { 1, 2, 3, 4, 5 };
 int[] x2 = { 4, 3, 2, 1, 0, 1, 2, 4 };
 int[] x3 = { 5, 6 };
 int[] x4 = { 5, 5 };
 assertFalse(sameEnds(x1));
 assertTrue(sameEnds(x2));
 assertFalse(sameEnds(x3));
 assertTrue(sameEnds(x4));
 }

7-10 Write method swapEnds that switches the end elements in an array of Strings. The

following code must compile and the assertions must pass.

 @Test public void testSwapEnds() {
 String[] strings = { "a", "b", "c", "x" };
 swapEnds(strings);
 assertEquals("x", strings[0]);
 assertEquals("b", strings[1]);

 assertEquals("c", strings[2]);
 assertEquals("a", strings[3]);
 }

 @Test public void testSwapEndsWhenLengthIsTwo() {
 String[] strings = { "a", "x" };
 swapEnds(strings);
 assertEquals("x", strings[0]);
 assertEquals("a", strings[1]);
 }

93

Chapter 7: Arrays

 @Test public void testSwapEndsWhenTooSmall() {
 String[] strings = { "a" };

 // There should be no exceptions thrown. Use guarded action.
 swapEnds(strings);
 assertEquals("a", strings[0]);
 }

7-11 Write method for accountsLargerThan that takes an array of BankAccount

references s and returns the number of accounts with a balance greater than the second

argument of type double. The following test method must compile and the assertions

must pass.

 @Test
 public void testAssets() {
 BankAccount[] account = new BankAccount[100];
 account[0] = new BankAccount("Hall", 50.00);
 account[1] = new BankAccount("Small", 100.00);
 account[2] = new BankAccount("Ewall", 200.00);
 account[3] = new BankAccount("Westphall", 300.00);
 int n = 4;

 int actual = studentsFun.accountsLargerThan(0.00, account, n);
 assertEquals(4, actual);
 actual = studentsFun.accountsLargerThan(50.00, account, n);
 assertEquals(3, actual);
 actual = studentsFun.accountsLargerThan(100.00, account, n);
 assertEquals(2, actual);
 actual = studentsFun.accountsLargerThan(200.00, account, n);
 assertEquals(1, actual);
 actual = studentsFun.accountsLargerThan(300.00, account, n);
 assertEquals(0, actual);
 }

94

Answers to Self-Checks
int x[0] = 78;

 ArrayIndexOutOfBounds exception would terminate the program

7-8 There would be a getBalance() message sent to account[n+1] which is probably null. Program

terminates

7-9 public boolean sameEnds(int[] array) {
 return array[0] == array[array.length-1];
 }

7-10 private void swapEnds(String[] array) {
 if (array.length >= 2) {
 int rightIndex = array.length - 1;
 String temp = array[rightIndex];
 array[rightIndex] = array[0];
 array[0] = temp;
 }
 }

7-11 public int accountsLargerThan(double amt, BankAccount[] account, int n) {
 int result = 0;
 for (int index = 0; index < n; index++) {
 if(account[index].getBalance() > amt)
 result ++;
 }
 return result;
 }

